

Making An Interactive Image Gallery
with and { ActionScript }

By Chad Jordan – November 15th, 2008

 1

In this guide you will learn:
1. The main interface and setup of project elements using Adobe Flash Professional CS4
2. A fundamental approach to object-oriented programming with ActionScript 3.0
3. How to dynamically load data into a flash project using XML (Extensible Markup

Language)
4. Implementation of tweens, easing effects, event listeners, arrays, and Booleans

Making projects in Flash has remained a mixed bag for me not just because of the technical and
artistic methodologies, but rather the requirements of installing both Java and Flash Player for
websites that require excessive hardware resources.

1) There can be issues regarding version control when installing Java on your computers
that can leave some users confused on how to resolve the problems with specific
versions of Java.

2) The requirement of Flash Player to be installed in order to view Flash websites or work
with interactive applications is never good.

No matter the application/website being built, any requirement to power the technology
should remain minimal for the sake of usability/reusability, ease of resources, bloatware,
sustainability, and compatibility. However, there are vast numbers of clientele that love Flash,
and ActionScript is the lightweight version of JavaScript. To its credit, ActionScript does allow a
lot of really cool, unique, original content to be created for interactive games, animation for a
web series, and flashy websites. I’ve known people who started their programming experience
learning ActionScript before moving into heavier, thicker programming languages, and this
seems to be very helpful for learning how to program. While I did not start with ActionScript, I
can absolutely see and agree with this notion of learning how to program with variables,
datatypes, conditional statements, loops, arrays, Booleans, and utilizing external data. Even
though I’ll be giving some brief insight into prepping some of these interactive elements,
holistically this guide is going to focus on the implementation of ActionScript 3.0 programming
to build an interactive web application. For any developers or people wanting to learn the
fundamentals of ActionScript programming, this guide should be very straightforward for you.
Like my previous guides, I’ll be displaying and explaining the code as I implement it for my
interactive image gallery. Anyone who has written code in Flash understands that the code
editor being used to write ActionScript is all built into the Flash Professional software. While I
will be building an application that is fairly straightforward in terms of object-oriented
programming, this is by no means a beginner’s guide. Therefore, readers should already have
some exposure to programming languages and feel confident using Flash. The primary purpose
of this guide is the code but I will be providing my code examples and explanations of said code
along the way, one step at a time, just as I’ve done in previous guides. I am by no means a
professional Flash developer, but I’ve written numerous applications in the past using object-
oriented and procedural programming paradigms. Why does this matter? If you read my
previous guides, hopefully you learned that systematic problem-solving, applying logic, and
then learning the syntax of the language that you’re wanting to write in can help you adapt to

Introduction

 2

other programming technologies for creating your content. When writing in AS3 (ActionScript
3.0), the code is still dependent on using the Flash software which is obviously a drawback. This
means we need to understand how to tie in the various elements that we’ll be writing the
functionality for in the code. These reference points created in the software, are required in
order to have our code interact with the created elements. With all of this being said, let’s
begin creating in Flash!

The Flash software is a multimedia platform designed to manipulate and animate vector
graphics for interactive web applications. If you’ve used Flash, you know this is done through
the primary Adobe software. Your new, Untitled project will be blank like this. Below are some
of the primary areas to become familiar with when using the software. The toolbar has very
similar tools and iconographies to Photoshop, and Illustrator, so if you’re proficient in either of
those, you’ll feel right at home with the toolbar in Flash. The layer panel is also very similar to
the layer panel in Photoshop, except this time the layers are tied to a timeline for the various
animations that you want to create. If you’re familiar with how to animate in 2D or 3D
software, you know that setting this movement is referred to as keyframing. The first keyframe
is at the beginning of the timeline. The Actions Window/frame is the code editor where we
write all of the code for ActionScript. For this guide, I’ll be spending the vast majority of my
time in there. The project FPS setting is just the location where you change the pace of your
frames per second for the movement your project. I like my project to move smoother and less
choppy, so in this guide I’ll be adjusting my frames per second to 30.00.

Observing the Interface

From a designer’s perspective, think of the stage as a blank canvas where all of your content
is displayed. You can click on the various content elements that you create in the stage,
which will then auto-select the active layer in the layer panel. The properties and library
pane is a place to make specific alterations to various elements within the project.

 3

When creating new elements in the layers panel, the principles of achieving this is much like
other design software like Photoshop. Every aspect of your created content that you’re
planning on having some form of functionality, needs to have another layer, and masked sub-
layers within that. You can also right-click any layer and go into properties to name, and assign
layer elements such as a movie-clip, a mask, a button, a container, etc.

This screenshot on the left displays the extra layers that I’ve created for the elements of my
image gallery. The image on the right displays the first preloader ball that I created as a vector
graphic. This is done with ease on the stage using the toolbar just like you would using
Photoshop or Illustrator, and just as you create multiple layers with that software, we do the
same thing in Flash for each layer. A standard preloader will have six different layers.

Prepping the Elements

 4

As you can see from the image on the left, I have six individual layers that will make up my
preloader. As mentioned earlier, the layers that you create in Flash are used along the timeline
with different types of elements attached to them. For the sake of animation, we can set these
up as tweens. They’re called tweens because in the world of animation tweens are short for
‘in-between’ and this is known as the process of generating images that go between keyframes.
As you hopefully already know from the concepts of animation, keyframes are the images at
the beginning and end of a smooth transition. The image on the right displays the animation
effects as I begin to scrub through the timeline, passing across the animation tweens.

You can see from the image on the left we are still a solid color with the preloader because we
are still on frame 1 and have not initiated the start of our animation through the timeline yet.
Even though it’s rather small, we see from the image on the right displaying our change in the
preloader balls the further I scrub across the timeline. The ActionScript code will repeat this
animation process over and over until all of my images have loaded into the gallery into the
thumb box and within the main viewport container.

This process with the preloader is only one small aspect of my program. The thumb box is a
very good example of how to understand the XML portion of this program. Within Flash, we
begin by creating a simple image container that will house all of the thumbnails for the image
gallery.

 5

You can see from these screenshots that I’ve created multiple layers for the thumb box, and
nearly all aspects of my project have been created as movie-clips. When you click on the
corresponding component (in this case movie-clip) in the properties and library panel you will
then see all of your layers populate in the layer panel for the component you click.

Doing this will also select (highlight) the corresponding element on the stage. These green and
blue bounding boxes display the proportions of the elements within my thumb box. From the
above example, you can see how I created my thumb box using basic design tools from the
toolbar. This is how we create all of our designs for the stage.

Now It’s time to prepare the XML document as the external reference point for dynamically
loading content into Flash. XML is a markup language based on SGML (Standard Generalized
Markup Language) and XML’s primary function is to create formats for data that are used to
encode information for documentation, transactions, database records, and multiple other
forms of data.

Setting Up the XML Document

 6

Starting off with any blank document such as Notepad, TextEdit, Wordpad, etc. I’ve named my
XML document ‘imageURLs.xml’ and it will contain the filenames for the data that is loaded into
the project. For this application, the XML code in my file is displayed as the following:

<?xml version="1.0" encoding="UTF-8"?>
<gallery>
 <image imagePath="images/pic01.jpg" thumbPath="thumbs/thumb01.png" info="Image 1"> </image>
 <image imagePath="images/pic02.jpg" thumbPath="thumbs/thumb02.png" info="Image 2"> </image>
 <image imagePath="images/pic03.jpg" thumbPath="thumbs/thumb03.png" info="Image 3"> </image>
 <image imagePath="images/pic04.jpg" thumbPath="thumbs/thumb04.png" info="Image 4"> </image>
 <image imagePath="images/pic05.jpg" thumbPath="thumbs/thumb05.png" info="Image 5"> </image>
 <image imagePath="images/pic06.jpg" thumbPath="thumbs/thumb06.png" info="Image 6"> </image>
 <image imagePath="images/pic07.jpg" thumbPath="thumbs/thumb07.png" info="Image 7"> </image>
 <image imagePath="images/pic08.jpg" thumbPath="thumbs/thumb08.png" info="Image 8"> </image>
 <image imagePath="images/pic09.jpg" thumbPath="thumbs/thumb09.png" info="Image 9"> </image>
 <image imagePath="images/pic10.jpg" thumbPath="thumbs/thumb10.png" info="Image 10"> </image>
 <image imagePath="images/pic11.jpg" thumbPath="thumbs/thumb11.png" info="Image 11"> </image>
 <image imagePath="images/pic12.jpg" thumbPath="thumbs/thumb12.png" info="Image 12"> </image>
 <image imagePath="images/pic13.jpg" thumbPath="thumbs/thumb13.png" info="Image 13"> </image>
 <image imagePath="images/pic14.jpg" thumbPath="thumbs/thumb14.png" info="Image 14"> </image>
 <image imagePath="images/pic15.jpg" thumbPath="thumbs/thumb15.png" info="Image 15"> </image>
 <image imagePath="images/pic16.jpg" thumbPath="thumbs/thumb16.png" info="Image 16"> </image>
 <image imagePath="images/pic17.jpg" thumbPath="thumbs/thumb17.png" info="Image 17"> </image>
 <image imagePath="images/pic18.jpg" thumbPath="thumbs/thumb18.png" info="Image 18"> </image>
 <image imagePath="images/pic19.jpg" thumbPath="thumbs/thumb19.png" info="Image 19"> </image>
 <image imagePath="images/pic20.jpg" thumbPath="thumbs/thumb20.png" info="Image 20"> </image>
</gallery>

Depending on how many images you are wanting to use, is up to you, but for my application,
I’m going to be loading 20 images into my file. The code makes a reference call using the image
tag and references the current location of the image file and then assigns it to ‘imagePath’. We
also see the same reference being done for the small thumbnails that are loaded into the
thumbGrid attribute in Flash. This will be done in the ActionScript code. The XML document
will be saved in the root of the project directory with the Flash project files. With this file now
in place, let’s program with ActionScript!

As mentioned earlier in the introduction, this guide is primarily about writing ActionScript code,
so from here I am leaving the rest of the design portion alone and jumping into the syntax side
of things. However you decide to create your own work is entirely up to you. As the designer,
you know how you want your content to work, but in order for everything to have functionality,
the code is the most important aspect of the application. As mentioned on page 2, ActionScript
is written in the code editor found in the Actions window of Flash. This is accessed just as you
would expect by clicking Window > Actions.

Once in the Actions window, we have to select the proper layer that we wish to right code
under. Per my earlier screenshots, you may have noticed that I created a layer called ‘Code’
and this is the active layer that we want to make sure is selected so we can begin writing our

Programming in ActionScript 3.0

 7

code for the gallery. I begin by importing the proper animation libraries into ActionScript.
Next, on line 4, I make variable declarations for an array to track which image is being displayed
to the user, and currentImage is the active image that begins in the XML list. Beginning on line
7, the DropShadowFilter attribute is a filter for the floating thumb menu.
1st number = distance, 2nd number = angle, the hexadecimal number = color, next is the
amount of alpha, the last 2 figures are the x & y blur. Line 10 gives the main images a subtle
glow and border for when we roll over the images with the mouse.

Beginning on line 14, these are the variable declarations for scrolling up and down along the
thumbnails using the button controls on the thumb box.

In this next section starting on line 20, I give a function call to ‘new Array’ for using the scroller
element to access the ‘maskedCon’ component that I declared in the properties and library
panel of Flash. The data that is pulled from this, is then assigned to the thumbsArray variable.
This array is used to load the thumbnails in the correct place of the ‘thumbGrid’ component. I
create more variable declarations for referencing the XML file. These requests are stored in the
variables and referenced in the functions that I write for storing and using the XML data.

 8

Beginning on line 40, the function XMLDone is designed as an event listener and allows us to
dynamically allocate the data from the XML file, and provides the functionality required to load
the data into the Flash project. Starting on line 44, firstImageURL places the first image on the
stage, and then the for loop on line 51 iterates sequentially through the load data and places
the images in order according to the XML instructions. Starting on Line 59, we add event
listeners to the thumbnails.

The next section of code involves writing a series of mouse event functions for the thumbs.

 9

This section of the program controls the forward and backward movement of selecting the
images. Even though the thumb box provides faster navigation through the images, the user
should still have the option to close out of the thumb box if they just want to scroll from left to
right, and vice versa. Line 120 places the images on the stage. The event listeners wait for a
mouse click and the function is executed when the direction of the button is clicked on the left
and the right sides of the image container.

When the thumb box is open, we want to have a way to scroll up and down through the images
when pushing the arrow buttons. These functions allow those controls to work.

 10

These results show the progress thus far of what
the thumb box looks like with the images loaded
into it, along with the control buttons. When the
thumb box is open, we want the ability to drag it
around anywhere within the program. In this
next section of code on line 151 the scroller
element accesses the dragBar attribute which
initiates the Event Listener and passes the
MouseEvent parameter to the function. Starting
on line 167 we setup a function that gives the
user the option to close the thumb box if they
prefer to scroll through the images without the
box on the screen. We have to give the user the
ability to reopen the thumb box if they desire, so
to do this we write a command on line 176 to

display the thumb box if it’s not currently active. Following that we write a function on line 178
for the ‘showThumbs’ attribute. It uses event listeners to wait for user input on mouse events.

 11

This concludes the programming portion for the image gallery. I’ve chosen some photos from
my own nature photography that I’ve shot in the past. Here is the result of the app at runtime:

We have to give the user the ability to resize the window at runtime and to do this, I
reconfigure the x & y positions of the stage based on how the window is resized by the
user. This section of the code takes the default input, and renders call-back functions for
translating new locations for all pieces of content inside of the program window.

 12

Every photo was properly read into the program, I tested all aspects of the application’s
functionality, and everything runs exactly as it should! The compiled swf file from this
application can be embedded and used on any Flash website. As discussed earlier, the user
needs to have the option to close out of the thumb box, and by doing so, the following buttons
appear and are also fully functional. Each photo makes a smooth transition fading in and out.

As you can see from this guide, interactive applications with ActionScript can be created with
little effort compared to how much more would be required with JavaScript. However, we also
have to utilize the Flash software to tie everything together. JavaScript also doesn’t require the
same resources that writing programs in ActionScript does, both on the software and hardware
side of things. This is all the more reason why I personally believe ActionScript, while a good
programming language to learn, is not good for reusability, stability, and compatibility. The
methodology of how it’s created is not likely to attract the majority of developers in the
industry regardless of how much organizations and other companies love the technology. I
definitely believe it’s good to display diverse, interactive knowledge in one’s portfolio of work.
Diversity in technical knowledge proves strong adaptability which is very important in tech. I
hope this guide has been helpful for you. All screenshots within Flash, the written code, and
captured images of the application within this guide were created by me based on a program
assignment from my Web Animation course in ActionScript. If you have any questions about
this guide or any other general inquiries, you can email me at technologicguy@gmail.com

Conclusion

