
By Chad Jordan – April 22nd, 2009

Creating A Simplified Facebook Page
Using PHP & MySQL

1

In this guide you will learn:
1. A brief overview and the general syntactic characteristics of PHP v5.2.9
2. How primitives, operations, and expressions work in PHP
3. File structure, form handling, and datatypes in PHP
4. A back-end implementation for building a simplified Facebook site using the vanilla

coding style of PHP and MySQL

PHP (PHP: Hypertext Preprocessor), is a server-side XHTML-embedded and open source
scripting language based on C. PHP scripts are either embedded in XHTML documents or are in
files that are referenced by XHTML documents. PHP code is embedded in XHTML documents
by enclosing it between the <?php and ?> tags. As a server-side scripting language, PHP is
naturally used for form handling and database access. Database access has been a prime focus
of PHP development; as a result, it has driver support for 15 different database systems. PHP
supports the common electronic mail protocols POP3, and IMAP. It also supports the
distributed object architectures such as COM and CORBA (Common Object Request Broker
Architecture). Since PHP is a scripting language, it is an alternative to CGI, Microsoft’s ASP
(Active Server Pages) ASP.NET, Sun Microsystems’ JSP (Java Server Pages) and Allaire’s
Coldfusion. In the sense of the way PHP’s scripts are interpreted, it’s related to client-side
JavaScript. When a browser locates embedded JavaScript code in an XHTML doc, it calls the
JavaScript interpreter to interpret the script. When a browser requests an XHTML doc that
includes PHP script, the web server that provides the document calls the PHP processor. The
server determines that a document includes PHP script by the filename extension. If it is .php,
.php3, or phtml, it has embedded PHP. The purpose of using PHP & MySQL is to allow the
content to be pulled dynamically from the database to create web pages for viewing in a
regular browser. On one side of the system, you have a user accessing your site through a web
browser to
request a page.
That browser
expects to receive
a standard HTML
document in
return. At the
other end, you
have the content
of your site, which
sits in one or more
tables in a MySQL
database that only
understands how to respond to SQL query commands.

Introduction

At this point, Facebook has been out for several years and I’ve signed up so that I can have a
more concise understanding of the site layout, and data flow between actions in order to
prepare my file structure for my Facebook Lite assignment. This guide demonstrates the
process I followed for writing my own Facebook Lite page in PHP with MySQL. As usual, my
written code snippets will be demonstrated using the Vim code editor in Linux.

2

PHP has four scalar types—Boolean, integer, float, and string; two compound types—array and
object; and two special types—resource and NULL. Because PHP is dynamically typed, it has no
type declarations. In fact, there is no way or need to ever declare the type of a variable. The
type of a variable is set every time the variable is assigned a value. An unassigned variable,
sometimes called an
unbound variable, has
the value NULL, which is
the only value of the
NULL type. If an unbound
variable is used in an
expression, NULL is
coerced to a value that is
dictated by the context of
the use. If the context
specifies a number, NULL
is coerced to 0; if the
context specifies a string, NULL is coerced to the empty string. A variable can be tested to
determine whether it currently has a value. The test is carried out with the IsSet function,
which takes the variable’s name as its parameter and returns a Boolean value. For example,
IsSet($fruit) returns TRUE if $fruit currently has a non-NULL value, FALSE otherwise. A variable
that has been assigned a value retains that value until either it is assigned a new value or it is
set back to the unassigned state, which is done with the unset function.

PHP has a single integer type, named integer. This type corresponds to the long type of C and
its successors, which means its size is that of the word size of the machine on which the
program is run. In most cases, this is 32 bits, or a bit less (not fewer) than 10 decimal digits.
PHP’s double type corresponds to the double type of C and its successors. Double literals can
include a decimal point, an exponent, or both. The exponent has the usual form of an E or an e,
followed by a possibly signed integer literal. There is no requirement for any digits before or
after the decimal point, so both .345 and 345. are legal double literals. Characters in PHP
are single bytes; UNICODE is not supported. There is no character type. A single character data
value is represented as a string of length 1. String literals are defined with either single-quote
(‘) or double-quote (“) delimiters. In single-quoted string literals, escape sequences, such as \n,
are not recognized as anything special and the values of embedded variables are not
substituted for their names. This substitution is referred to as interpolation. In double-quoted
string literals, escape sequences are recognized and embedded variables are replaced by their
current values. For example, the value of
‘The sum is: $sum’
is exactly as it is typed. However, if the current value of $sum is 10.2, then the value of
“The sum is: $sum”
is
The sum is: 10.2

Primitives, Operations, and Expressions

3

If a double-quoted string literal includes a variable name, but you do not want it interpolated,
precede the first character of the name (the dollar sign) with a backslash (\). If the name of a
variable that is not set to a value is embedded in a double-quoted string literal, the name is
replaced by the empty string. Double-quoted strings can include embedded newline characters
that are created with the Enter key. Such characters are exactly like those that result from
typing \n in the string. The length of a string is limited only by the memory available on the
computer. The only two possible values for the Boolean type are TRUE and FALSE, both of
which are case insensitive. Although Boolean is a data type in the same sense as integer,
expressions of other types can be used in a Boolean context. If a non-Boolean expression
appears in a Boolean context, the programmer obviously must know how it will be interpreted.
If an integer expression is used in a Boolean context, it evaluates to FALSE if it is zero;
otherwise, it is TRUE. If a string expression is used in a Boolean context, it evaluates to FALSE if
it is either the empty string or the string “0”; otherwise, it is TRUE. This implies that the string
“0.0” evaluates to TRUE. The only double value that is interpreted as FALSE is exactly 0.0.

Let’s consider scalar-type conversions. PHP, like most other programming languages, includes
both implicit and explicit type conversions. Implicit type conversions are called coercions. In
most cases, the context of an expression determines the type that is expected or required. The
context can cause a coercion of the type of the value of the expression. Some of the coercions
that take place between the integer and double types and between Boolean and other scalar
types have already been discussed. There are also frequent coercions between numeric and
string types. Whenever a numeric value appears in a string context, the numeric value is
coerced to a string. Likewise, whenever a string value appears in a numeric context, the string
value is coerced to a numeric value. If the string contains a period, an e, or an E, it is converted
to double; otherwise, it is converted to an integer. If the string does not begin with a sign or a
digit, the conversion fails and zero is used.

Non-numeric characters following the number in the string are ignored. PHP uses the eight
relational operators of JavaScript. The usual six (>, <, >=, <=, !=, and ==) have the usual
meanings. PHP also has ===, which produces TRUE only if both operands are the same type and
have the same value, and !==, the opposite of ===. If the types of the operands of the other six
relational operators are not the same, one is coerced to the type of the other. If a string is
compared with a number and the string can be converted to a number (if it is in fact a string
version of a number—for example, “42”), the string will be converted and a numeric
comparison will be done. If the string cannot be converted to a number, the numeric operand
will be converted to a string and a string comparison will be done. If both operands are strings
that can be converted to numbers, both will be converted and a numeric comparison will be
done. This is often not what is desired. To avoid it and similar problems associated with string-
to-number coercions, if either or both operands are strings that could be converted to
numbers, the strcmp function should be used rather than one of the comparison operators.
One common way for a browser user to interact with a Web server is through forms. A form is
presented to the user, who is invited to fill in the text boxes and click the buttons of the form.
The user submits the form to the server by clicking the form’s Submit button.

4

The contents of the form are encoded and transmitted to the server, which must use a program
to decode the contents, perform whatever computation is necessary on the data, and produce
output. When PHP is used to process form data, it implicitly decodes the data. It may seem
strange, but when PHP is used for form handling, the PHP script is embedded in an XHTML
document, as it is with other uses of PHP. Although it is possible to have a PHP script handle
form data in the same XHTML document that defines the form, it is perhaps clearer to use two
separate documents. For this latter case, the document that defines the form specifies the
document that handles the form data in the action attribute of its <form> tag. PHP can be
configured so that form data values are directly available as implicit variables whose names
match the names of the corresponding form elements. However, this implicit access is not
allowed in many Web servers (through the configuration of PHP), because it creates a security
risk. The recommended approach is to use the implicit arrays $_POST and $_GET for form
values.

We know that Facebook was primarily structured around using PHP to build the site. The
following diagram demonstrates a complete version of the file structure for everything I’ll be
implementing on my Facebook Lite page:

1) A required Index file
2) A messaging system
3) The ability to Signup
4) A data file for processing

the Signup
5) A Login page
6) A data file for processing

the login
7) A generic Facebook file

for storing the login cache
8) A logout data file
9) A session timeout for an

idle user
10) A data file for processing

the status update for a
logout

11) The ability to upload a
photo

12) A data file for processing
the photo

13) The ability to add or
remove a friend

14) See the status of friends

My File Structure for Facebook Lite

5

This file structure is what I needed to create a lightweight version of the Facebook website.
This process is also how we consider a single webpage version of Facebook to work. The data
flow between files is fairly straightforward, and creating a visual diagram/flow chart can help
you see what you will need to start implementing your page. Like most websites, the vast
majority of data is handled within the index file. The index file will contain every aspect of the
assignment requirements, including additional functionality for a messaging system for
communicating with other students in the same class. The webpage had to function just like
the functionality of the existing Facebook website. Just like other assignments, the professor
has a database set up for us to access and store the files that need to communicate with the
files that we are uploading. Unlike HTML, PHP is a server-side scripting language, therefore the
content of PHP files can only be seen once uploaded to a server. Considering this information,
it’s time to jump into the implementation of my Facebook Lite page.

Following the file structure that I created, like an html file, I can start with the index.php file. It
honestly doesn’t matter what order the user starts in. The elements of it are created specifying
and using XHTML code, but we save the file as a PHP extension. While the main file is the index
file, the signup.php file is a logical starting point prior to creating the index page since we need
to provide credentials to get into the index file, and the signup form is where we create said
credentials. The following example is how I created the signup form.

This is a basic HTML setup, but the file must be saved as signup.php. The signup form is created
using plain HTML, but just like any online form, we have to write the back-end code to provide
the required functionality to the form. PHP scans files for parsing, and it looks for an opening

Implementing the Code

6

and closing tags to gain access to the file. We use the <?php open tag to act as a door so the
file can be accessed and all code between the opening and closing tags is interpolated. Starting
on line 2 the dollar sign declares a variable call to screenname and then set a request to
screenname as an operator. The same is done for the password as well. Next on Line 4, I make
a MySQL database connection request for my screenname and my password. Starting on line 9
I make a function call to select the database that has been supplied on the department servers.

On line 15 I declare a header call to login.php as a reference point for the signup, and then type
a closing tag to seal the code. This covers the signup portion of the program, but for anyone
who has already created an account, we need to give people a way to log in as a returning user.
Creating the login is essentially the same process as creating the signup form, just with slightly
varied verbiage indicating a normal login. This is provided in the following example:

7

At this stage, most of this is the same as the previous processSignup file, except that this one is
checking against the status of current user, and fetches the result for the existing condition and
if there is a mismatch in either the id or password, this processing file throws an error.

On line 10 I begin a MySQL query with a SELECT statement to instruct the database of the
desired data to be retrieved, in this case, locating the data for the variable FormScreenName
taking the result, and then checking the status of screenname and password with an if
statement. At the end just like the previous files, we link header as index.php. Continuing with
the index portion of the program, we have to create the main page (index) file to display our
Facebook page. Just as before, I link the previous page to reference the file data required to tie
into each page function and then begin declaring my standard html code.

8

This next portion of the code contains the standard HTML structure and then a few other
elements that will be used on the main page of my Facebook Lite page.

Starting on line 34 I create a table tag to hold the next piece of content and the PHP is written
to handle the data for the variable id. Just as before, starting on line 38 I run my conditional
check to open the database again, and this time starting on line 44 I run a MySQL query to
SELECT the screenname and id. The WHERE clause is used to filter records, extracting only
records that fulfill specific conditions in this case, accessing the id attribute for Accounts.

9

The if conditional on line 58 will print off a ‘no search results’ found message if the conclusion
of the table data in the search is equal to 0. Line 61 loops through and returns the result of
ScreenName in the associative array. The rest of the while loop echoes (displays) the output of
the specified parameters from lines 62 to 69 for removing a friend.

The next several lines throughout this block of HTML are <form> tags that will display input for
online or offline status, setting the profile picture, and a search bar for the user.

You’ve seen this before; I start by creating a table, and then create a conditional to check a
connection to the MySQL database for accessing the department servers.

10

Starting on line 103 I run a MySQL search query for record data, followed by a SELECT
statement searches for Pictures, ScreenName, and id within the Accounts element; and then
checking the result of the query. Just like in my previous block of PHP, starting on line 106 I run
my conditional checks against the query, followed by the while loop on line 115 that returns
the result of ScreenName in the associative array. The rest of the while loop echoes (displays)
the output of the specified parameters for adding a friend. Then, just as before, we close the
MySQL connection, followed by the closing php tag, and then the closing table tag.

The remaining code in the index file repeats the same process with previous elements, except
this time it’s being done to allow the users to message each other in the window.

11

When it comes to embedded PHP, we place the code within the <table> tags because
everything outside of a pair of opening and closing tags is ignored by the PHP parser which
allows PHP files to have mixed content. The index file may be done, but there’s still a little
more to do with the remaining files. Earlier on page 4 I provided a visual diagram
demonstration of the file structure for my Facebook Lite program. Those files are still being
referenced, and needing to be written. The last php file that I referenced in my index file was
the message file and since that file has a little more going on inside of it, I’ll jump into that file
next. We already have a general message (text area) space on the index page, but we know
that we need more SQL queries thrown inside of PHP to handle the functionality of those HTML
elements.

Starting from the beginning I connect to the supplied database. On line 5 I get the current time
as a UNIX timestamp variable. Next I insert the information sent from the form into the
database. Line 9 sends a string that the thread is posted, and returns the value to the index
page. Next, on line 10 this query selects the replies from the database where the thread ID
matches the thread $_GET value. We have to store these results, so beginning on line 11 the
while loop gets the results and stores them into an array. Everything within the curly brackets

can read from the database using $r[] and we need to convert the UNIX timestamp entered
into the database for when a thread or message is posted into a readable date, using date().
This is done on line 14. Line 21 inserts the information sent from the form into the database,
then the next line allows us to update the reply count in the threads database, and finally,
making a “reply posted” message with a link back to the index page. The facebook.php file will
be used to store information from login details and messaging.

12

In order to have a proper session timeout, we need to write a timer to do so. The
set_time_limit attribute performs a function call to 300 seconds which will give the user 5
minutes of idle time before disconnecting with the database.

As any changes are made to the user account and profile page, this data needs to be processed
and updated in the system. This is where I created a file called ProcessStatusUpdate.php.

13

In this previous block, we can see from line 15 that we need to run a conditional check if we
were idle too long and the timer ran out, resulting in a disconnect from the database. This file
is used in multiple instances throughout the Facebook program and executed numerous times
as any changes are updated to the user profile. This next block is the smallest external file with
code in the whole program. Logout.php doesn’t really require much at all. We simply start a
session for the action to be executed, and then destroy the session when the user clicks the
logout button. The header must be set to login.php if the code is executed.

This next block (upload.php) gives the ability to upload a file to the user profile page. The if
statement on line 3 checks the instance of the userfile attribute in an associative array.
Essentially, $_FILES declares a variable that performs an HTTP request to upload variables.
Line 9 uploads and stores the image and temporary name in the database. The next section is
just like previous blocks where we check to gain access to the database, and the query on line
17 updates the Accounts parameter and applies the image data to the id of the user.

The primary method of handling exceptions in PHP is the try-catch. In a nutshell, the try-catch
is a code block that can be used to deal with thrown exceptions without interrupting program
execution. In other words, you can "try" to execute a block of code, and "catch" any PHP

14

exceptions that are thrown. This is helpful when testing multiple exceptions and/or the
properties of multiple exceptions like class name, message, and code because even once an
exception is thrown the PHP cannot return to the line of code that comes after the line that had
thrown the exception. This block of code (getPic.php) is how we can get the picture that we
want to upload. At this stage of the guide, the vast majority of this code is really just repeated
again from earlier files that I’ve already explained. The only difference in this file is from lines
19 to 21. For the header link, we make a call to Content-type rather than a specific file. Line 20
(if the conditionals are successful) takes the result from the imagecreatefromstring datatype
and sets the value to the variable im for the image.

On line 21, the imagejpeg function is an inbuilt function in PHP which is used to display image
to browser or file. The main use of this function is to view an image in the browser, convert any
other image type to JPEG and altering the quality of the image.

Facebook wouldn’t be Facebook without the ability to add or remove friends, so we need to
implement this functionality into the program. This is starting point for my addFriend.php file,
and the first 10 lines of code are the same process that I’ve demonstrated in previous files.

15

Starting on Line 11 we use the MySQL INSERT operator for values passed to the Friends
parameter, and then check the condition of the current user id, and other variable id’s in the
query.

The next block is the process of removing a friend with my removeFriend.php file. This script is
really straight forward even more so than adding a friend. All you’re really doing is simply
running a MySQL DELETE operator from the query and specifying the variable id of the user
you are removing from index.

The final page for this program is the ability to view your friends list on the index page. This is
basically done in one large query and then printing the results to the screen. We grab the data
stored in userid, the profile, along with their image and will display the current user as you
scroll through the list.

16

The while loop takes the data stored in the associative array and prints it using the specified
HTML tags and the variables for the table data. Retrieving this data will also assist in the
messaging side of my program for displaying the user’s photo. I can just piggyback off of this
file for that data.

That’s essentially it as far as the backend. I still had to write a stylesheet to decorate the
content up a little, but after finishing my CSS file, and making a few other small changes to my
PHP code and my HTML, I managed to successfully complete the program and this was the final
result of my Facebook Lite page running in Chrome:

17

This concludes the guide for my Facebook Lite in PHP & MySQL program. I hope it was a helpful
learning experience for jumping into vanilla PHP v5.2.9 with MySQL. This program was the 8th
assignment for my COS264 - Interactive Application Development course from my department
at Taylor University. One of the greatest aspects of PHP is that it’s open-source and free from
cost unlike other overpriced server-side languages like Webfocus. It can be downloaded
anywhere and is readily available to use for events or web applications. PHP is cross-platform
so it can run on any OS like UNIX, Linux, or Windows. It’s mainly used due to its faster rate of
loading over slow internet speed than other programming languages. My entire website is also
PHP-driven. I write my pages in HTML, but I wrap all of my code in PHP to handle content so
I’m writing less code, and doing more with managing content. All diagrams and code presented
in this guide were created and written by Chad Jordan for learning purposes only. The OS that
this was displayed in was Ubuntu Linux 8.10 and written using the Vim code editor. For any
possible inquiries such as general questions regarding this guide or other professional inquiries
please feel free to email me at cjordan@wondercreationstudios.com
Resources Used:

• Sebesta, W. Robert - Programming the World Wide Web – 4th Edition – 2008
• Php.net

Conclusion

https://cse.taylor.edu
https://php.net

