
Interactive Computer Graphics Using
OpenGL Programming with C++
By Chad Jordan – December 6th 2008

1

In this guide you will learn:
1. The origins of interactive computer graphics in C++ using the OpenGL API
2. Understanding the process of the computer graphics pipeline and 3D theory
3. Drawing and animating primitive shapes in a 3D matrix
4. Creating GUI menu systems for mouse interaction with 2D and 3D graphics
5. Tree traversal concepts and understanding quaternions using matrix algebra
6. Writing vertex & fragment shaders in GLSL to run on a programmable GPU

When I say, “the origins of interactive computer graphics” I’m not talking about the moment
Evan Sutherland presented his Ph.D. thesis on computer graphics in 1963. I’m referring to
creating computer graphics out of nothing, having only a code editor, and enthusiasm for
exploring the world of computer programming. For my code examples, I will be using a code
editor in Linux called Vim. Any readers of this guide should know that the subject matter herein
is a more advanced area of programming than my previous guides. This means you’ll need to
be somewhat familiar (and comfortable) with topics that cover the principles of polygonal
tessellation, vector & scalar mathematics, splitting matrices, and programming shaders.

The definition of computer graphics is a mathematical representation of creating and
manipulating 2D and 3D images with the aid of computer programming. The term, computer
graphics has most commonly been associated with scientific visualizations in computer science
since it originated in that field of study.

For those that are not aware, the Utah Teapot on my cover page has existed a lot longer than
the days of Cinema 4D, 3d Studio Max, and Maya. It also goes much further back than the
Stanford Bunny. The Utah Teapot was created in the mid-1970’s by computer graphics
researcher Martin Newell, a member of the pioneering graphics program at the University of
Utah. During my semester of taking Computer Graphics, one of the things I had to learn how to
program was bringing the Utah Teapot into a 3D scene using Bezier patches. The infamous
Utah Teapot has remained as one of the most iconic memorable images created in computer
graphics to this day. The teapot has made its appearance in the 1995 Pixar film Toy Story, and
The Simpsons Treehouse of Horror VI episode: Homer3. Many people do not realize just how
iconic this little teapot has been in the history of computer graphics.

Introduction

2

As of more recently, I tried my own hand at modeling and rendering the Utah Teapot in
Blender. The image on the left used Blender’s internal render engine, and the image on the
right used the Yafaray render engine from a kitchen scene I modeled.

When people have asked me, “Do you have to be good at math to be a coder?” I always tell
them it definitely helps, but it’s far more important to think systematically with a logical mind.
Being a good problem solver is important. Full disclosure, I’m not great at math. I’ve always
considered myself very average with it, but I’ve been better at programming and I know how to
tie in the math with the code using OpenGL. Why am I mentioning this? Because people that
are interested in programming should know that math really starts making more of an
appearance when creating computer graphics and games, not necessarily with basic
programming on the command line. This is especially the case when it comes to OpenGL
programming. OpenGL (Open Graphics Library) is a cross-language, cross-platform application
programming interface (API) for rendering 2D and 3D vector graphics. While most of my
programming experience with OpenGL has compiled through the CPU, the API is typically used
to interact with the graphics processing unit (GPU), to achieve hardware-accelerated rendering,
which I will be demonstrating later on.

Computer graphics on a holistic scale, especially when created from scratch using only
programming is another step up on the comprehensive platform. Overall, there is a lot more
involved on the theoretical side, the mathematical side, and the coding side of OpenGL
programming. In this guide, I’ll be covering concepts revolving around 2D graphic primitives,
scene graphs, 3D interactive programming, splitting matrices using matrix multiplication, and
basic principles of geometry and trigonometry applied to OpenGL. Therefore, the
terminologies and references that I will be using in this guide are more directed at
programmers that have already had a couple of years of programming experience beyond the
basics and studied the essentials of computer graphics. My goal in this guide is to break down
some of the programs that I’ve written using this API with C++ to provide a good learning
experience and a glimpse into what it’s like to delve into the core of computer graphics.

3

“Hello Wor….Triangle?” Yes, this is the famous “Hello Triangle” program in OpenGL. Just as the
“Hello World!” program exists with statically-typed compiling systems, the “Hello Triangle!”
program exists in Visual Programming Languages (VPL). When it comes to OpenGL, everything
occurs in 3D space, but the screen or window is a 2D array of pixels so a large part of the
graphical results in OpenGL has to do with transforming all 3D coordinates to 2D pixels that fit
on your screen. In OpenGL the process of converting 3D coordinates to 2D pixels is managed by
the graphics pipeline. The graphics pipeline (which I will be elaborating more on shortly) can be
divided into several steps where each step requires the output of the previous step as its input.
We can pass sRGB values to the vertices which gives us the result of color interpolation.

What do I mean when I say color interpolation? Color interpolation chooses between color
operations occurring in the sRGB color space or in a (light energy linear) linearized RGB color
space. Having chosen the appropriate color space, component-wise linear interpolation is
used. This triangle is an example of Barycentric Interpolation:

Breaking a color down into components significantly assists with interpolation, as we now have
only three numbers that we need to move in-between values. This means three linear
interpolations, one for each component, following a well-known formula. Given two colors A

Your First VPL Program

4

and B, each with components r, g, and b, we can derive the in-between color C at time γ (γ is
normalized and moves between 0 and 1). What this means is that the triangle's edges b - a and
c - a form a non-orthonormal basis for points in the triangle. The offset of any point in the
triangle from vertex (point x) from vertex a is given by a linear combination of these vectors.

So now that you know how it works, you may be asking yourself, what exactly can we use color
interpolation for? Color interpolation is used all the time in software to represent data whether
for scientific graphs with matlab, or graphic design purposes using color palettes in Photoshop.
Larger companies may be wanting a color scheme to help decide on a theme for their website.
Interpolating colors can help you create your own custom color palettes since interpolating
data can allow you to see a vast array of colors between other colors that you may or may not
consider using. Interpolating data for different colors can also determine levels of severity with
doppler radar, or how you represent data for the unemployment rate in the US.

So how do we consider all of these processes from a conceptual standpoint? At this stage of
the guide we take a look at the modeling-rendering paradigm of the computer graphics
pipeline. In many situations, especially in CAD applications and the development of complex
images, such as for movies we can separate the modeling of the scene from the production of
the image. On one side of the application we have the API, and the other side is a combination
of hardware and software that implements the functionality of the API. Pipelining is similar to
the assembly line of a car plant. As the chassis passes down the line, a series of operations is
performed on it, each using specialized tools and workers until the assembly process is
complete. At any one-time multiple cars are under construction and there is a significant delay
or latency between when a chassis starts down the assembly line and the finished vehicle is
complete. Here is a basic representation of the arithmetic pipeline which has an adder and a
multiplier that computes the same basic operations for a single processor a + (b * c).

5

Suppose you need to carry out the same computation with many values of a, b, and c. The
multiplier can pass on the results of its calculation to the adder and start its next multiplication
while the adder carries out the second step of the calculation on the first set of data. Whereas
it requires the same amount of time to calculate the results for any one set of data, when
working on two sets of data at a time, our total time for calculation is significantly shortened.
This basic pipeline represents the increased amounts of data blocks added to a normal pipeline.

However, the more data blocks that we add to our pipeline, this means more processing time
occurs which results in more latency in the system and its important to balance latency against
increased throughput when evaluating the performance of the pipeline. There are four
essential parts to the graphics pipeline:

1) Vertex processing
2) Clipping and primitive assembly
3) Rasterization
4) Fragment processing

While the general process of the graphics pipeline is fairly static, not every pipeline represents
the same data blocks, and of course, there are more details that can be included depending on
what is included. This is a more detailed look at the OpenGL pipeline as well as Direct3D.

Computer Graphics Pipeline

6

Vertex processing is typically one of the first blocks of the pipeline, and each vertex is
processed independently. The two major functions of this block are to carry out coordinate
transformations and to compute a color for each vertex. Within this data block there are four
additional stages of processing to understand. The first one involves arranging the objects in
3D space, and this is referred to as model transformation. The next is the view transformation
which sets the positioning and orientation of the camera in 3D space. The camera has three
parameters: location, direction, and orientation. These three parameters must be defined and
written when first creating your scene.

The third stage of vertex processing is projection transformation (also referred to as perspective
transformation) and this is used to define our camera settings. Essentially it sets up what can
be seen by the camera such as field of view, aspect ratio, and optional near and far planes. This
is part of the clipping & assembly process in the imaging system. The fourth and final stage of
vertex processing is viewport transformation, which outputs everything for the next step in the
graphics pipeline, rasterization.

At this stage the primitives that emerge from the clipper are still represented in terms of their
vertices and must be further processed to generate pixels in the frame buffer. An example of
this, if three vertices specify a triangle filled with a solid color, the rasterizer must determine
which pixels in the frame buffer are inside the polygon. The output of rasterization is a set of
fragments for each primitive. The fragment can be thought of as a potential pixel that carries
information with it, including its color and location. This is used to update the corresponding
pixel in the frame buffer. Fragments can also carry along depth information that allows later
stages to determine if a particular fragment lies behind other previously rasterized fragments

7

for a given pixel. Fragment processing takes in the fragments generated by the rasterizer and
updates the pixels in the frame buffer. Put another way, it calculates the final colors textures
based on the given parameters from the user.

The color of a fragment may be altered by texture mapping or bump mapping as shown here:

The color of the pixel that corresponds to the fragment can also be read from the frame buffer
and blended with the fragment’s color to create translucent effects. Regardless if you’re
building interactive 3D scenes with programming, or building a 3D scene with render software
like Maya, these scenes are filled with meshes each consisting of hundreds and possibly
thousands of triangles. You can boost the realism by wrapping (UV/Normal Mapping) 2D
textures on flat surfaces, hiding the fact that the polygons are just tiny flat triangles. While flat
textures are helpful with realism, when observed much closer the mesh is easy to see the
underlying flat surfaces. The vast majority of real-life surfaces aren’t flat, but clearly show
plenty of bumpy details.

The idea behind normal mapping is that instead of interpolating the vertex normals across the
triangle face (which creates the smoothness we are trying to get rid of) they can simply be

8

sampled from a texture. This represents the real world better because most surfaces
(especially the ones we are interested in for gaming) are not that smooth such that light will be
reflected back in accordance with the way we interpolate the normals. Instead, the bumps on
the surface will make it reflect back at different directions, according to the general direction of
the surface at the specific location where the light hits. For each texture these normals can be
calculated and stored in a special texture which is called a normal map. During lighting
calculations in the fragment shader the specific normal for each pixel is sampled and used as
usual. The following images show the difference between the normals in regular lighting and
bump mapping:

Given everything that I’ve explained regarding normal maps, the following mathematical
formula represents how UV mapping is applied and projected on a tangent plane in OpenGL.

This formula is a great source when interpreted into OpenGL code for writing normal maps into
your applications, not only for tangent surfaces but for object and material displacement as
well. In many ways, normal maps are what bring your objects to life and allow for more vivid
scenery. The only drawback to some of these more detailed formulas is trying to find the

9

delicate balance between detail and latency for processing power. Cutting back on subsurface
division with lower polygonal objects and relying on better UV mapping techniques can
significantly assist in swifter processing and response times. One way to do this is considering a
simple plane used as a wall. A plane has a total of 4 vertices (one point at each corner). We
can easily map textures to flattened objects and apply a normal map to it in order to give the
illusion of detailed bricks. With this method we save thousands of system resources, polygons,
and time invested into creating actual bricks along a flattened plane.

A visual example of this is a brick wall surface. What all do we know about a brick wall? We
know that a brick surface is rough, and not always completely flat. Bricks are highly textured
objects that contain small, sunken areas of cement with a lot of detailed holes and cracks. If
you view a bricks surface in a well-lit scene it’s pretty apparent what the texture looks like, but
in a slightly more faded scene such as this one with just a single point light, we see just how
much clearer and more detailed the texture appears when normal maps are applied.

This example is a great visual representation of how the above mathematical formula (properly
implemented into the code) can create wonderful vivid results. Now that you understand some
of the basic theories and methodologies behind graphics manipulation and the graphics
pipeline, let’s look at some of the syntax methods for defining and calling functions in OpenGL
code.

No matter which programming language you’re using with the OpenGL API, we’re still defining
and declaring our variables, constants, Booleans, and writing functions as we would with any
other language. However, this time the way we’re calling and implementing the functionality is
what is changing. This time we’re programming visual effects and images along with our
functionality which means we have a lot more that we’re having to implement than before.
This also means new methods of learning and writing syntax.

10

An example of this is how we use data types. In traditional C types, we use int and float but
in OpenGL we use GLint and GLfloat. These types are defined in the OpenGL header files
and usually in an obvious way, for example: #define GLfloat float
Using OpenGL types allows additional flexibility for implementations where you may want to
change floats to doubles without alerting existing application programs. Considering a vertex
function, if the user wants to work in two dimensions with integers, then the syntax would be:
glVertex2i (GLint xi, GLint yi) and three dimensions with floating-points would be:
glVertex3f (GLfloat x, GLfloat y, GLfloat z) Finally, if we use an array to store
the information for a three-dimensional vertex: GLfloat vertex[3] and then use:
glVertex3fv (vertex)

Vertices can define a variety of geometric primitives different numbers of vertices are required
depending on the primitive. We can group as many vertices as we want between the functions
glBegin and glEnd. The argument of glBegin specifies the geometric type that we want
our vertices to define. Hence, a line segment can be specified as follows:
glBegin(GL_LINES);
 glVertex3f(x1,y1,z1);
 glVertex3f(x2,y2,z2);
glEnd();

We can use the exact same syntax to draw vertex points by copying and pasting the above
code, and simply calling GL_POINTS in place of GL_LINES. It’s entirely understandable if it
seems puzzling how to interpret the values of x, y, and z with vertices. You may be asking
yourself, what units are they in? Are they measured in feet, meters, or microns? What about
the point of origin? The simplest response is that it’s entirely up to you. One of the major
advances in graphics software systems occurred when the graphics systems allowed the user to
work in any coordinate system that they desired. The advent of device-independent graphics
freed application programmers from worrying about the details of input and output devices.

This user’s coordinate system became known as the world/object coordinate system, or
application model. Screen coordinates are expressed in integer types, because the center of

Data Types in OpenGL

11

any pixel in the frame buffer must be located on a fixed grid. This is because pixels are
inherently discrete and we specify their locations using integers. OpenGL’s API structure is
similar to most modern graphics API’s including Java3D and DirectX. Therefore, any effort you
put into learning OpenGL will carry over to other software platforms. That being said, OpenGL
is important to learn because unlike DirectX, OpenGL is a cross-platform system so you can
write applications across Windows, Mac, and Linux operating systems. Most OpenGL
applications will be accessing functions through three libraries. Functions in the main GL library
have names that begin with the letters ‘gl’ and are stored in a library. The next library is the
Graphics Library Utility (GLU) which uses only GL functions but contains code for creating
common objects and simplifying viewing. In order to interface with the window system and get
input from external devices into our programs, we need at least one more library. For the ‘X’
Window System this is called GLX, for Windows, it’s WGL, and for Macintosh it’s AGL. Rather
than using a different library for each system, we can use a readily available library called the
OpenGL Utility Toolkit (GLUT) which provides the minimal functionality that should be expected
in any modern windowing system.

When it comes to primitives and attributes, we’ve learned a little regarding how GL_LINES and
GL_POINTS can be used to draw 2D and 3D objects, but to build more geometric objects we can
use the geometric primitives and image/raster primitives. Geometric primitives are specified in
the problem domain and include points, line segments, polygons, curves, and surfaces. These
primitives pass through a geometric pipeline.

Raster primitives, such as arrays of pixels, lack geometric properties and cannot be manipulated
in space in the same way as geometric primitives. They pass through a separate parallel

12

pipeline on their way to the frame buffer. The basic OpenGL geometric primitives are specified
by sets of vertices and the programmer defines the objects with sequences of the following
form:
glBegin(type);
 glVertex*(...);
 .
 .
 .
 glVertex*(...);
glEnd();

The value of type specifies how OpenGL assembles the vertices to define geometric objects.
Other code and OpenGL function calls can occur between glBegin and glEnd. For example,
we can change attributes or perform calculations for the next vertex between glBegin and
glEnd. Finite sections of lines between two vertices called line segments in contrast to lines
that are infinite in extent are very important in geometry and computer graphics.

Polygons play a special role in computer graphics because we can display them rapidly and use
them to approximate arbitrary surfaces. The performance of graphics systems is characterized
by the number of polygons per second that can be rendered. A polygon can be rendered in a
couple of ways. We can either render its edges or the interior with a solid color or pattern.
However, the outer edges of a polygon are easily defined by an ordered list of vertices, if the
interior is not well defined, then the lists of vertices may not be rendered in a desirable
manner, or even rendered at all. In two dimensions, as long as no two edges of a polygon cross
each other, we have a simple polygon. Although the locations of the vertices determine
whether or not a polygon is simple, we can ask what a graphics system will do if it is given a
nonsimple polygon to display.

An object is convex if all points on the line segment between any two points inside the object or
on its boundary are inside the object. Convex objects include triangles, tetrahedra, rectangles,

Drawing With Polygons

13

circles, spheres, and parallelepipeds. In three dimensions, polygons present a few more
difficulties because, unlike all two-dimensional objects, all the vertices that define the polygon
do not need to be located in the same plane. These basic principles regarding polygons help us
to understand drawing and connecting vertices to line segments for 2D and 3D spaces. By
learning these basics, we can move on to polygon types in OpenGL.

Fans and strips allow us to approximate many curved surfaces with ease. This means we can
construct an approximation to a sphere to use a set of polygons defined by lines of latitude and
longitude as shown below. We can do this very efficiently using either quad strips or triangle
strips.

Considering a unit sphere, we can describe it by the following three equations above. If we fix θ
and draw curves we can change Φ, we get circles of constant latitude. By generating points at
fixed increments of θ and Φ, we can define quadrilaterals as shown in the above sphere.
Remembering that we must convert degrees to radians for the standard trigonometric
functions, the code for the quadrilaterals corresponding to increments of 20 degrees in θ and to
20 degrees in Φ is:

14

Hopefully with the information I’ve covered so far, it’ll be much easier to grasp what is going on
in the code. With that being said, let’s jump deeper into the code. One of the first OpenGL
programs I experimented with was a glui cube program. GLUI (GLUT-based C++ User Interface
Library) properties provide controls such as buttons, checkboxes, radio buttons and spinners to
OpenGL applications. The program demonstrates the use of 3D homogeneous coordinate
transformations and simple data structures to rotate a cube with color interpolation on the axis
of the users choosing. Both normals and colors are assigned to the vertices and the cube is
centered at the origin so "unnormalized" normals are the same as the vertex values. In other
words, an object becomes brighter if we orient it towards a light source. The orientation of an
object surface plays an important role in the amount of light it reflects (and thus how bright it
looks like).

To begin we initialize the axis flag so the radio button begins on the z-axis, and the main render
window. Next, we pass a series of floats to theta which applies all RGB values to the cube.
Example: GLfloat vertices[][3] = {{(R)-1.0,(G)-1.0,(B)-1.0} the intersecting points of the vertices
have floats which represent RGB values from left to right. Beginning on line 23, we use pointers
to the windows and some of the controls we’ll create.

15

At this stage, we create callback functions for our GLUI control menu to display at runtime. We
set the axis of rotation and then beginning on line 34 we write a function to draw a polygon via
the list of vertices. Next, on line 51 we have to write a function to map the vertices to the faces
of the cube so the cube will display with all six sides.

16

These examples should provide a clearer insight into how the faces are mapped to the color
cube that we are using in the GLUI cube program. Beginning on line 60, we display the callback,
clear the frame buffer, the Z-buffer, draw and rotate the cube, and then swap the buffers. On
line 73 we write our spinCube function that controls the functionality of the cube. This is an
idle callback that spins the cube .5 degrees around the selected ‘Z’ axis, and then the GLUI code
checks for the display window.

Mouse interaction in graphics programs is useful for experimenting with quaternions and
essential if you have keyboard input reserved for other functionality. This void function allows
us to create mouse button inputs that can be used within the GLUT window for rotating the
cube on the X, Y, and Z axes. I will discuss more examples with mouse interaction shortly.

0 = X
1 = Y
2 = Z

You may have seen the above-unwrapped
example before in game development or VR
scenarios which are commonly referred to as
skyboxes. This is an example of an unwrapped
skybox that can be used in 3D environments to
make the world around you seem bigger than
it is.

These images are mapped to the inside of a
cuboid for the player controller objects to
move around in 3D space. This can be
performed in OpenGL programming, game
engines, or 3D render software.

17

One of the great advantages of OpenGL programming is understanding how objects are stored
and manipulated in 3D space. This type of knowledge also transitions to using render software
like 3Ds Max, Maya, and Blender. Before there were full GUI (Graphical User Interface)
software applications, programmers had to create all cameras, light sources, and primitive
objects using VPLs like OpenGL and DirectX. The reality of writing sizable programs with VPLs is
by the time you’re done writing; you’ve basically written a miniature game engine.

Image generation with OpenGL primitives is a great step in expanding your knowledge base
with camera coordinates and light sources. This init function initializes a material property,
light source, lighting model, and depth buffer.

Diffuse and specular lighting adds good quality of illumination to your scene by adding better
perspective to viewpoints and depth of objects. In regard to creating primitive objects, it’s not
nearly as fast as using 3D render software, but we can still create them in OpenGL without too
much trouble.

18

We have our lighting model, and now we need to add objects to the scene. In this display
function, we use gluLookAt to place the camera at (eye) position, target direction, and up
vector. In a simpler way, this means the camera is placed in front of the central origin of our
scene. On line 59 we use glPushMatrix as a function call for pushing the current matrix stack
down by one, duplicating the current matrix. This is also referred to as a transformation matrix.
The glTranslated and glTranslatef functions will control the angle and position of our objects.
The glRotated function on lines 61 and 62 controls the angle of the axis for rotation.

This is the result of changing the
gltranslate coordinates for the torus

and cube from –
Torus: -.75, 0.5, 0.0 to -.75, 0.5, 1.5
and the cube: -.5, 0, 0 to 1.5, .45, 1 Camera coordinates set to X: 0, Y: 3, Z: 6

In OpenGL, we need to have the
functionality in place to resize the
windows at runtime. By doing so, the
program has to understand the ability
to resize (re-translate) the objects
inside the GLUT window.

19

Back on the topic of mouse interaction, these are bits and pieces of a Checkers and Chess
program that I wrote in OpenGL for an interaction assignment in my Computer Graphics class.

To begin drawing the Checkerboard, we consider
the model on an 8x8 square grid. On line 94, we
start by declaring two variables for the board where ‘x’ is the row and ‘y’ is the column. The
first for loop is iterating through the horizontal axis, and the next one is looping through the
vertical axis. On line 100, the if statement is checking for red or black squares and the next line
we are giving a function call to select the red squares, otherwise we select the black squares.
We declare four vertices clockwise from lines 107 to 111 to face the player.

20

The next three functions from lines 144 to 178 are to assist with moving the player pieces,
checking for legal moves, and jumping other player pieces. Just as I used GL_POLYGON to draw
the checkers pieces, in a more complex manner to build chess pieces, we learned earlier in this
guide that we can draw and manipulate GL_QUADS, and GL_TRIANGLES at the vertex, which is
exactly what I’ve done here to draw a 2D Bishop inside of a switch statement:

Obviously, this is only an example of one piece on the Chessboard and the Pawn and Bishop
were the two easiest pieces to make. While this was a very tedious process, it is an excellent
way of learning more about drawing and manipulating quads, triangles, and polygons in
OpenGL. Just as we translated mouse functions to allow the user to move player pieces around
the Checkers board, we do the same thing in Chess, using similar interaction methods:

21

As far as drawing a tile or board grid of regular polygons in two dimensions, my examples with
the Checkers and Chess boards are good examples of tessellation. We can also use similar
function calls for three-dimensional space rather than two-dimensional. This is a fish tank
program I made for a scene modeling assignment that uses GUI manipulators with a tree-
traversal approach to draw and manipulate a basic 3D scene using primitive objects such as
spheres, cylinders, cones, and boxes.

The objects are placed in a
treenode, and then the child and
sibling nodes are traversed in the
data structure. I also used this
approach, created a visual diagram, and
explained it in my previous AI Battleships
guide. I used similar principles in my fish
tank program.

Creating light sources to illuminate the scene.

22

We learned earlier that objects in three-dimensional space are really just manipulated primitive
objects like spheres, cubes, rectangular boxes, cones and more. In many ways, this is the exact
same situation in the real world. My fish tank is just a rectangular box made of five GL_QUADS
with one “plate of glass” removed from the top of the rectangle. As you can see from line 199

the RGBa color values
from left to right give me
the glass look with
opacity applied. The
remaining values are just
creating scalability for
width, height, and length
of the tank parts. This is
by no means the end-all
code for drawing the
tank, but it does allow us
to have a function for
drawing the tank
parameters.

This function draws the
parameters of the yellow
submarine fish in my tank.

I can also use Bezier patches and
vertices to draw the Utah Teapot,
a teacup and a teaspoon directly
into my fish tank scene.

23

OpenGL is very good at creating GLUI menus and controls for our applications. This is the code I
wrote for the GLUI controls in my fish tank program. Beginning on line 576, I create the side
sub-window (master control panel). The next following lines of code are just adding the
buttons for the required functionality that the assignment calls for within the control panel. As
you can see, this is done with little effort.

No matter what kind of 3D environment you’re working in whether it’s for computer graphics
or game development, you’re most likely going to deal with quaternions at some point. A
quaternion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers
and i, j, k are imaginary units that satisfy certain conditions. Quaternions provide a convenient
mathematical notation for representing spatial orientations and rotations of elements in three-
dimensional space. An ordered pair of real numbers z = (a, b) is a complex number. The first

component is called the real part and the
second component is called the imaginary
part. Moreover, equality, addition,
subtraction, multiplication and division are
defined as follows:
(a, b) = (c, d) if and only if a = c and b = d
(a, b)±(c, d) = (a±c, b±d)
(a, b)(c, d) = (ac – bd, ad + bc)

Creating GLUI Menus/Control Panels

Quaternions With Matrix Algebra

24

Quaternions are typically represented as:
a + b i + c j + d k

While they are used in pure mathematics, they’re also
used in practical and gaming applications in OpenGL.
We can write our own game engines that simulate
physics to roll or launch tumbling rigid bodies in a 3D
environment. This can be done using the same real-
world formulas and just programming them in using
OpenGL. This also brings us to another topic when
using quaternions, and that is matrix multiplication.
Matrix multiplication is the most important matrix
operation. In practical applications, it’s used in areas
such as network theory, linear-system equations,

transformation of co-ordinate systems, and population dynamics. However, the usefulness of
matrix multiplication in computer graphics is its ability to convert geometric data into different
coordinate systems with scaling, translations, and rotations. Put bluntly, matrix multiplication
is really just a compact way of representing a series of vectors you want to apply in the
direction of a motion vector in rows and columns.

The OpenGL fixed pipeline provides 4 different types of matrices which I refer to as the MAT4:
(GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE and GL_COLOR). The transformation routines
for these matrices are as follows; glLoadIdentity(), glTranslatef(), glRotatef(), glScalef(),
glMultMatrixf(), glFrustum() and glOrtho() which I have used in multiple code examples so far.
In linear algebra (also referred to as matrix algebra), matrix splitting is an expression that
represents a given matrix as a sum or difference of matrices. The questions arise, why do we
do this? What is the point of splitting matrices, why is it so important, and how does it benefit
us in OpenGL? The short answer is, ever since 1992 with all first revisions of OpenGL 1x and 2x
there was a projection matrix, but no model or view matrix. Ergo, we created our own using
matrix multiplication. It wasn’t until this year that OpenGL 3.0 added some new blocks to the
pipeline using vertex and fragment shaders with GLSL. Hence, my earlier example of the
OpenGL 3.0 pipeline that I made on page 5. The older methods were “replaced” by GLSL
programming. However, by splitting our projection matrix, and combining our model and view
matrices, we retrieve coordinates for the perspective matrix.

25

This brings me to the final section of this guide with programming vertex and fragment shaders
using GLSL programming. Shaders use GLSL (Graphics Library Shading Language) a unique
language similar to C syntax which executes directly on the graphics pipeline. The language
uses a lot more math involving vectors and matrices, and is easily the most complex
programming language I’ve written in. One of my assignments for my Computer Graphics class
involved displaying Moiré effects and Fresnel reflection with sinusoidal functions programmed
through vertex and fragment shaders to run on a programmable Nvidia GPU. Part 1 called for
computing the color in a fragment shader using the following sinusoidal function:

I used the fragment’s texture coordinate (gl_TexCoord[0].xy) for the x and y values with val
passed as the uniform variable scaleValue (e.g. scaleValue.x). At runtime, the program begins
at absolute zero, and ‘scaleValue’ can be changed infinitely in the positive or negative direction
via the ‘+’ and ‘–‘ keys as the program runs.
The syntax would be represented as:

val = scaleValue
x == gl_TexCoord[0].x
y == gl_TexCoord[0].y

vec4 a (vec4 is a data type of 4 floats)
{ x, y, z, w }
{ r, g, b, a }

a.x a.g
a.z a.a
a[0] – a[3]

The quadrilateral of the vertex grid is composed of 400 smaller quadrilaterals. The vertex
shader will be written to manipulate the vertices before the quadrilaterals are rasterized. For
the animation of the vertex grid, we use the variable, ‘theTime’ in order to achieve the
animated movement of the plane. This is a mathematical representation of how the uniform
variable ‘theTime’ will be used in this program:

For the vertex shader, I'm passing the color from glColor*f ('gl_Color') directly down to the
fragment shader without modifying it. Then, I multiply the color by the input from the
vertexShader, and outputs the result as the final fragment color. Next, we pass the texture
coordinate for unit #0 (gl_multiTexCoord0) down unmodified.

Programming Shaders With GLSL

Moiré effects on a quadrilateral plane

26

Here we initialize static data types, and GLSL implementation.

We need implementation in place to draw, manipulate, and animate the plane in the program,
so the following draw function helps to accomplish that functionality.

27

After we successfully have the code in place for the keyboard inputs, we can scale up the
vertices and rotate the plane. The following output images demonstrate this functionality and
the Moiré effects for the vertex and fragment shaders.

Part 2 of the assignment called for a simplified version of the Fresnel reflection model as an
approximation based on the work of Fresnel Schlick. Fresnel reflection occurs in transparent
and opaque materials. The effect is that as incident light becomes oriented closer to the gazing
angle of the surface, more light is reflected yielding a slight glowing appearance.
The approximated Fresnel formula is:

α is the angle between the lighting direction and the
normal n1 , n2 depends on the index of reflection
but generally are in the range 0.0 – 2.0
For this assignment we use n1 = 1.0, n2 = 2.0

Phong illumination model

28

The Fresnel effect produces specular highlights only around the outer edges, specifically in the
direction of the light. In this code example, I pass the model view matrix down the fragment
shader and multiply the position by the vertexShader and then output the specular reflection
around the silhouette of the illumination model.

For the vertex portion of the Fresnel effect, we're at the point of origin with the Eye
Coordinates so ‘EyePos’ is (0,0,0). In this function we also calculate the lighting direction of
ambient, diffuse, specular, total terms, Fresnel shading, and then write the total colors to the
Phong model.

29

Just as I initialized static data types, and GLSL implementation for the quadrilateral plane, I do
the same again passing material and lighting effects for the Phong illumination model.

The Fresnel scene is very straight forward as we are just drawing a sphere and relying on the

GLSL implementation to apply
the Fresnel effects.

Once we have all of the code in
place for the keyboard input
and compile the main files we
can run the program to see and
control the lighting effects:

30

While there was a lot of information discussed in this guide, a proper and accurate introduction
to this kind of subject cannot be summed up in only a few pages. On a scalable level
considering the overall subject, the amount of content I covered was still barely scraping the
surface of computer graphics. Even with my small code examples that I explained throughout,
had I demonstrated the complete amount of code to write these programs, this guide would
have been vastly larger in size. However, I believe the topics I covered were essential to
learning some of the more important areas of computer graphics. Thus, helping to provide a
better understanding the origins of how this type of technology was created and applied to
applications. This was the biggest motivation behind writing this guide in the manner that I
have. Overall, I hope this guide was helpful for you, and that my visual content assisted well in
the learning process. With the exception of the Toy Story, Simpsons, and weather doppler
images, all diagrams, code, and application-rendered images within this guide were created by
me and converted digitally from my original notes. If you have any questions about this guide
or any other general inquiries, you can email me at technologicguy@gmail.com
Resources Used:

• Lengyel, Eric. Mathematics for 3D Game Programming & Computer Graphics – Second
Edition – 2003

• Engel, Wolfgang. Programming Vertex and Pixel Shaders – 2004
• Rost J. Randi, Lichtenbelt, Barthold, Kessenich M. John, Olano Marc. OpenGL Shading

Language – 2004

Conclusion

