
By Chad Jordan - November 25th, 2006
AN INTRO TO GAME LOGIC IN C++

 1

In this guide you will learn:
1. The fundamentals of Propositional Dynamic Logic in game theory
2. The fundamentals of the Object-Oriented Paradigm (OOP)
3. Basic data structures and algorithms for game development
4. The use of constructors and destructors with objects and classes
5. Abstract Data Types (ADT) with public and private functions, and binary search trees
6. A complete implementation of Artificial Intelligence for a Battleships game in C++

While this guide provides an introductory level of information, game logic is considered one of
the most difficult areas of programming. Therefore, it’s best to treat this guide as a gateway for
programmers that are already at a beginner to intermediate level. For my code examples, I’ll
be using a simple code editor in Linux called Vim. With that in mind, let’s begin.

In any aspect of programming, there is always a requirement for systematic problem-solving
and logical reason. The principles of how logic and object-oriented methodologies are applied
to programming environments are very similar across the board. However, there are also many
underlying complexities rooted in cognitive science that the required approach is not always so
obvious. This is especially the case when considering game logic. Holistically, game logic on a
cognitive scale is some of the most complicated puzzles that a developer can work with. The
operational semantics of game theory can be used to reason with determining a game between
two players. There are multiple approaches to how we can describe the computational
meaning behind game theory, but Propositional Dynamic Logic (PDL) represents the states and
events of dynamic systems through modal logic.

PDL is a thoroughly vast system of semantics including proof theory, axiomatizations, and their
computational complexity. Put bluntly, it’s designed for representing and determining the
properties of functions in programs. Applied to game logic, a visual representation looks like
this:

Imagine this tree represents a game between two players, in this instance, A & E. At their turn,
player ‘E’ faces an array of five hypothetical available actions, but is contingent on the decision

Introduction

 2

that player ‘A’ makes. It goes back to the age-old discussions that so many of us have faced
when we were younger when we played against an opponent. “Oh, I should have moved there,
that would have changed the outcome in my favor.” Sound familiar? That mentality is referred
to as counterfactual conditionals. This analysis also gives way to multiple deliberations,
procedures, observations, and interfaces known as epistemic game theory. This area of
research encompasses an array of various mathematical frameworks when analyzing games.
We have to consider the stages of decision making when we have incomplete information,
recall when how to learn from past mistakes, and mixed strategies based on our opponent/s.
There are hundreds of PDL formulas that can affect the outcome of the deliberation process.
This is especially the case for abstract (raw strategy) games that are primarily designed for
analysis and deliberation such as Chess, Reversi, and Go.

There are plenty of other forms of strategy and puzzles that give way to propositional dynamic,
modal, and systematic logic. For the purposes of this article, I’ll be looking at Object-Oriented
Programming. When moving from procedural programming to object-oriented programming,
the advantage is that the code and the operations that manipulate the code are both
encapsulated within the object. In other words, when an object is transported across a
network, the entire object (including the data and its behaviors) goes with it. The next question
you may have is, What is an object? Objects are the building blocks of an OO program. Object
data and object behavior is exactly what you would expect. Object data is stored within the
object and represents the state of the object. Object behavior is what the object can do.
Within these objects are subsets of other data attributes, methodologies, interfaces, and
classes. A class is the blueprint of an object. When you instantiate an object, you apply a class
as the basis for how the object is built. The Object-oriented thought process consists of four
primary concepts: Inheritance, Encapsulation, Abstraction, and Polymorphism.

With regard to these four primary concepts in OOP, inheritance allows a class to inherit the
attributes and methods of another class. In this instance, we can create brand new classes by
abstracting out common attributes and behaviors. When it comes to encapsulation, one of the

Fundamentals in OOP

 3

advantages of using objects is that the object doesn’t need to reveal all of its attributes and
behaviors. Good OO design only allows objects to reveal the interfaces needed to interact with
it. Therefore, details that are irrelevant to the use of an object should only be hidden from
other objects. Abstraction defines a model to create the component of an application. It is the
process of hiding the internal details of an application. This is accomplished using abstract
classes and interfaces. Polymorphism literally means many shapes. While it’s closely related to
inheritance, its often cited separately as one of the most important and powerful advantages of
object-oriented technologies.

In an inheritance hierarchy, all subclasses inherit the interfaces from their superclass. For
example, consider the Shape class and the behavior called Draw. When you tell someone to
draw a shape, their first question should be, “What shape?” You cannot draw a shape, since it’s
an abstract concept, there must first be a specification of a concrete shape such as Circle. Even
though Shape has a Draw() method, Circle overrides this method and provides its own Draw()
method. Overriding basically means replacing an implementation of a parent with one from a
child. For example, suppose you have an array of three shapes – Square, Circle, and a Triangle:

Even though we treat them as shape objects, and send a draw message to each shape object,
the end result is still different for each because objects in the array provide the actual
implementations. In short, each class is able to respond differently to the same Draw method
and draw itself. This is what is meant by polymorphism. The Shape class in the above example
has an attribute called area that holds the value for the area of the shape. The method
getArea() includes an identifier called abstract. When a method is defined as abstract, a
subclass must provide the implementation for this method; in this case, Shape is requiring
subclasses to provide a getArea() implementation. This next example is extra important. We
can create a class called Circle that inherits from Shape (the keyword, ‘extends’ signifies that
Circle inherits from Shape):

 4

We introduce a new concept here called a constructor. The circle class has a method with the
same name, Circle. When the names are the same and no return type is provided, the attribute
is a special method called a constructor. Constructors are considered advanced object-oriented
concepts for structured programming and are also good for performing initializations. There
are three main types of constructors: Default, Parameterized, and Copy.

The default constructors do not take any argument and have no parameters. Parameterized
constructor arguments help to initialize an object when it is created. Copy constructors are
member functions that initialize objects using another object of the same class. In some of my
upcoming code examples with my Battleships game, we will see first-hand how constructors
can be implemented and assist in the game development process.

Data structures at their core, are the building blocks for software engineering. They define how
data is arranged in memory and can be operated on by using various algorithms. An algorithm
is code that manipulates data in data structures. In short, an algorithm is a list of rules and
instructions that a computer needs in order to carry out various tasks. On their own, we know
data structures are arrangements of data in memory, but in-game development when
combined with special-purpose algorithms can be processed and used in very unique ways for
gaming. Data structures drive many gaming experiences with artificial intelligence. AI systems
can be simple, or very complex. Even in simple AI systems data structures and algorithms are

Constructors

 5

used to control the behavior of dynamic game elements. However, the more complex AI
becomes, speed becomes more of an issue. The reason for this lag is because the more
complicated the algorithms, the more processing time is required to complete operations.
When you consider that numerous objects have to execute individual AI algorithms at once,
you can find yourself having to balance realism with performance. This is one example of why I
personally prefer C++ since it’s one of the faster languages for processing. It’s also another
reason that AI is typically not as complex in games as it is with real-world applications like
robotics, healthcare technologies, self-driving cars, and other software applications.

Good algorithms can take time to create, especially for game development. The more
preparation you put into your algorithms, the better your implementation will be. The
cornerstone of any computer application whether strictly practical or for gaming requires
proper planning of everything you will need in the program in order for it to run as it should.
With this in mind, it’s vital to have a well-thought-out diagram to follow when implementing
your algorithm into your game. The following flow chart is a logic model that I made for my AI
Battleships game:

 6

At the start of my development, I know that I need to start creating my variables, integers,
booleans, and other constant data types that I’ll be referencing later in the program.
Therefore, I’ve created a header file to store them. In a game of Battleships, there needs to be
a board that the player sees, and a board that the game controller sees. There are also variable
declarations for the characters that display on screen when certain functions are triggered and
checking if there’s a win, loss, or quitting.

Using Public & Private Functions

 7

Next, I prep my other header file for more source declarations for BoardV2. I define
constructors, destructors, and copy constructors for board length == width and height. The
assignment operator (operator=) is used to copy values from one object to another already
existing object. I overload the assignment operator to be used to create an object just like the
copy constructor.

Starting on line 17 I also create general public functions for implementing encapsulation via the
access specifiers. In OOP, encapsulation represents binding data and functions into one
container. Just as I mentioned above regarding encapsulation, this way all functions and classes
will be hidden inside the container of the data and the way the functions process the data.

Beginning on line 29 I put the prototypes for the private data and helper functions here for the
control board, the player board, and the label board. Afterward, we use the #endif directive to
end multiple inclusion control. If there’s an expression written after the #if has a nonzero
value, the line group immediately following the #if directive is kept in the translation unit.

 8

Now it’s time to begin our programming process by creating a shell for the implementation of
the board. We do this by creating a .cpp file and writing the essentials for the Battleships. As
mentioned in my previous guide called ‘Understanding Programming’ we include the general
<iostream> library for sending data to and from the standard streams input, output, error, and
log respectively. I also reference my header file that I created above so that I can reference the
characters, private, and public data attributes. Next, I start prepping the board by declaring the
integer boardSize and converting it as a constructor, creating a player board, followed by the
controller’s board, and declaring that there has not been a winner or a quitter yet. The board
must begin empty with only water, therefore we initialize the board to just water.

As we know from a game of Battleship, there is a set number of spaces on the board, or grid if
you will, that determines where players can launch torpedo’s in an attempt to hit the other
player. The for loops iterate through the sections of boardSize for a fixed number of times as
long as the test condition is true. In for loops, the initialization part is for declaring and
initializing any loop control variables. The conditional part of the for loop must be true for the
body of the loop to be executed.

 9

Next, we show the program how we want to place ships. The parameters rowVector and
colVector are used to determine the direction of the ships from the starting points of row/col.
The showBoard function allows the program to display the specified board, then we clear the
screen.

This is our current output as-is with the empty board of
water.

 10

This section of code checks all rows and columns on the controllerBoard for any pieces unhit
ships, and if any ships are unhit, then the notification is sent to the user. Otherwise, if nothing
is unhit equal or greater than (=>) everything being hit equal or greater than (=>) then there is a
victory. The switch statement is a multiway branch construct that translates into a jump (or
branch) table. They’re primarily used to reduce repetitive coding and provide more clarity and
faster processing through the compiler.

 11

This function starts by allowing the user to create 4 ships on the board, two with 4 cells in
length, and two with 3 cells in length. The next section is a mix of do while and another switch
statement that provides the variable input and output to the screen for the playerBoard and
controllerBoard data attributes.

In this case of the switch while loop, the value of the expression is true, so the body of the
while loop is executed. Another advantage of using do while loops also make our code more
readable and it’s better to execute at least one control loop prior to keyboard input. This is also
better for the user because the program will run until the user decides to quit the program or
the goal within the program is achieved.

 12

Now that the shell implementation (BoardV0) is created, it’s time to create a declaration source
file for BoardV2. I include my standard libraries and header files for reference, I also include
the <ctime> library. This header file declares a set of functions, macros and types to work with
date and time. Starting on line 12 I’m creating constructors for length == height and width.
Setting length to boardSize tells how much of the board will be used and then the for loop
initializes each position in each board to water. On line 22 I set a destructor since nothing is
being dynamically allocated. The copy constructor on line 24 is copying boardSize from ‘other’
to newBoard then the for loop is moving through each location on the board, and then moving
the data from one board to the other.

The overloaded assignment operator on line 34 is for creating objects similar to the copy
constructor so that we can copy values from Board1 to Board2.

 13

Here we are setting up general-purpose functions with count-controlled loops. The Boolean
parameters on line 49 are randomly giving a zero or a one value which is typecast to true or
false. We iterate through to board searching for portions of the ship in row & col.

Here we print out the character column divider and iterate through boardSize for BoardV2 until
we return a Boolean value for row and column.

 14

Here the same process continues. I’m still continuing to print out more dividers and characters
for opponent and owner views, iterating through boardSize with count-controlled loops.

This next section tests what is at position row and col against that position in Board1 which
holds the information regarding ships. We check for a miss, or a kill.

 15

The following function provides a visual representation for the length of shipBoard in a two-
dimensional array on BoardV2 for row & col.

This next function is a counter for rows and columns and returns a Boolean value. Beginning on
line 152 we’re putting in prototypes for private data and helper functions. For the third
Boolean function beginning on line 162 we’re retrieving labels for the player to test against, and
checks each position marked by a label and if it’s a hit, it returns true.

 16

The last function for this file performs the same iterations as the previous ones except this time
we’re checking for if a ship is marked as killed. We can use this function for marking ships on
the player board and labeling them in a parallel array. #endif is the end of multiple inclusion
control.

I made this visual representation as a concept for the ships marked on the board. It provides
the length of the ship in comparison to boardSize and if the shot marks a hit on the ship or not.

 17

Now, with this portion of our board logic completed, we need to write a testBoard file to check
the overall functionality of what we’ve implemented so far in our various .CPP files. This way
we can execute the input and output based on what the user wishes to test.

In this next file we just need to test what we’ve created for the board thus far. To speed this up
we can copy lines 135 to 165 from the BattleshipsV0.cpp file into a new file called
testBoard.cpp and this will help us save a lot of time.

 18

As you can see from the above code, there’s no need to re-write the wheel when we’ve already
built it and we know it compiles with no errors. There were only a few small tweaks with
Booleans and char data types that we returned to run the test board. With this in place, we can
test for the input and output of our ship placement with respect to rows and columns, and
finally, the response from our program for each type of input. Since this test program passes all
input and output parameters correctly, it’s time to start implementing the structure for the AI
of our game. If you haven’t created a separate directory for AI yet, now is a good time to create
it and copy your defines.h file into it. Now we create another header file that defines a
primitive message class and I’ve called mine Message.h. In this file we define constructors,
general set and get functions for message type functions, row, column, and string functions.

Next, we know we have to retrieve message data that will eventually get printed out to the
screen for our AI. Therefore, we have to write a CPP file to accept the declarations that we
created in the previous header file in order to initialize the object message type as well as the
message data to the specified values and then return the data for row, col, and string. This
portion of my program is displayed on the next page. The arrow operators in this next code
example allow access to the pointer variables in the structures and unions.

 19

 20

Next, we create another header file to store our class for PlayerV1 to make choices on the
board. It gets the players move choice, then is returned to the caller. The parameter then
returns the Message, move. The getMove parameter is a pure virtual function. The Player class
declares, but does not define it. That allows a class to force all derived classes to implement
the functionality. The moveResult parameter informs the player of the result of a previous
move. The player updates its internal representation of the opponent’s board to reflect the
result. The message param ‘msg’ will have the shot coordinates row, col, and the shot result
available via the messageType.

Here we set boardSize, and then initialize the board to water.

 21

Now is a good time to create the main driver of our Battleships implementations, the AI Tester.
Just like my other header files, we make sure to account for all variables that we will need to
reference during the AI gameplay.

This diagram displays the interaction between the files and commands during the execution of
the AI Tester and messages returned for the player board.

With this concept in mind, C++ implementation is required for our AI Tester.

 22

We Include the previous header files to tie in the integers, Booleans, parameters, and constant
values that we reference in our logic CPP files. Beginning on line 15 we use arrow operators
again to setup player 1 followed by general access functions from lines 19 – 21. Beginning on
line 24 we write a function to place a ship where rowVector and colVector are used to
determine direction of the ships when starting from row and column.

For our stand-alone statement we can have a static number of ships (constant value) that is set
in stone in our header files so we won’t change it later. We can set the ship names and their
length and assign it back to an integer. If the ship placement is improperly set outside of its
declared size, then the cerr data object will print an error message.

 23

In this function, we return a Boolean value for hLMostRecentShot to check for a possible shot
for row and column. Aside from the standard iteration from my other CPP files one of the big
differences with this file is adding ship highlighting and we retrieve the data variable
getOwnerView, and if it’s not the owner view, we use arrow operators to get access to the
opponent view and update the regular game value for row and col. Then, we clear the screen
with a clearScreen function.

 24

The usleep variable takes the argument in microseconds, so we have to convert milliseconds to
microseconds. Just like previous files, tweaking our switch statement for the current variables
of processShot is the best method for user input.

 25

With access functions running the conversion of milli seconds to micro seconds, our delay
function will work. Starting on line 161 this code kicks in if running in batch mode but we want
to see what is happening with the occasional game if playerBoard and processShot are in
trouble at runtime. However, if there is not an error, the iterations properly run between
playerBoard and processShot and then check for the amount of shots and ships that have been
placed on the board.

With this file complete, it’s time to start prepping our multiple player AI’s.

 26

As far as our AI players are concerned, our Battleships game should have multiple levels of
difficulty for our AI’s. However, due to the extensive length of this guide, I will only be
providing my smartest AI. In my AI Battleships game, there are three types of AI that I’ve
created:

1) A gambling player that is sloppier and takes too many risks at random that I call
gamblerPlayer.

2) A clean player that plays better than the gambler, and utilizes cleaner moves at a more
intermediate level of intelligence which I call cleanPlayer.

3) Finally, I have my most intelligent player of the three that uses a scanning technique to
look for ship length and shots already fired across the spaces of the board called
smartPlayer.

Creating a smart AI that understands and performs the best methods of search patterns on a
board grid first involves a human understanding how the computer already thinks and searches
in a matrix. The computer will understand how it needs to search, but just like any other
programming methodologies and algorithms, we have to create that communication for the
computer so it can perform exactly what we want. Using binary search trees is a great way to
create a thought structure and algorithmic approach to our smart player AI. Binary Trees are
structure nodes that hold hierarchical relationships at different levels. We search through
these trees in order to locate, retrieve, manipulate, and delete data. Here is an example of a
binary search tree that I used for my smartPlayer AI:

This next page has a more visual in-depth look at how logarithmic principles are applied to my
algorithm for searching through the board grid for hits, misses, or water. The following visual
representation is some of the most important parts of the thought process for my smartPlayer
AI.

Algorithm Design With Binary Search Trees

 27

Logarithmic equations are good methodologies to apply for this particular algorithm of my AI.
The same is said for how we apply the principles of binary search trees with the object-oriented
paradigm in our algorithms. So the question becomes what does this all mean to those who
don’t study or research it? Essentially, I’m creating an advanced scanner that runs multiple
iterations and levels of scans through the grid of our board searching for a hit or miss until
there is a kill. With these concepts in mind, it’s time to implement my smartPlayer AI.

 28

This first portion of the program gets the computer’s shot choice, then returns it to the caller.
The most important parts of the return message are the row and column values. Position 0 of
the int array should hold the row and position 1 of the column.

Implementing the AI

 29

The HitFound function for SmartPlayer is straightforward. The AI will search through boardSize
and if it finds a part of a ship, then we’ve made a hit, and the AI will continue the sequence of
hits for the length of the ships until we’ve made a kill. Otherwise, the AI will continue to scale
the board. HuntShip is a function that is told how to search the board for ships from North,
South, East, and West directions for all rows and columns on the board.

The final piece to this program, is connecting everything together with our main.cpp file.

 30

These include declarations will access and setup the random number generator. The <cctype>
header declares functions to classify and transform individual characters such as checking
whether a character is uppercase or not. The <cassert> header (from the C standard <assert.h>
header) declares the assert macro and can be included in multiple instances for different error
handling instances. The <ctime> header file is used for time manipulation like retrieving date
and time information.

The Battleships project header files are of course included from all of the earlier variables and
data types that we also need now when writing our main function for program initialization.
This main file is basically one large function.

Line 30 seeds the random generator. This only needs to occur once per execution of the
program being run. In order to generate random-like numbers, in our case ship coordinates
and lengths of ships in their randomly placed positions on the board.

 31

Starting on line 32 the program prints out a message to the screen asking the user what size
board they want to play on. Any size less than 3x3 or greater than 10x10 will return false and
exit the program. Afterward, the user is prompted to choose which AI they would like to test.

Next, we can output a question of how many times you would like to test the AI and input the
total amount of games, followed by determining display options.

 32

Now the code iterates through the count-control loop based on the number of games we
specify, and a new AI and board awaits user input for which AI we want to test with using the
switch statement.

Since the tester does timing in milliseconds, not seconds, we convert to milliseconds, update
the total amount of moves, get rid of the used player AI and board, and then print out the stats:

That’s it! Now we compile everything and run the program to see the results of our AI.

 33

Everything is running as it should! This is the result of my SmartPlayer AI in action. Sinking
ships and taking names! The user inputs the length of the ships, and the ‘H’ for ‘hit’ is auto-
replaced by a ‘K’ for ‘kill’ once the enemy is killed. The lettering is represented by the length of
each ship. Overall, smartPlayer is one smart AI and gets the job done!

I hope this guide has been helpful for anyone who reads it. While this is an introductory guide, I
realize there is a lot of information included. Writing a program like this actually requires a lot
more work and studying in the field in order to understand the complete algorithmic and
programming approach to creating an AI Battleships game in C++. If anything, there’s still a lot
more theoretical, and computer science concepts that I’ve left out of this guide. Everything
that I’ve included is pertinent to the purposes of understanding the fundamentals of game
logic. This is one of the primary reasons why I stated that this guide is intended for
programmers that are already at a beginner to intermediate level. To further expand upon
game development, the industry has very advanced game engines in place to help them put
their games together faster, but even with game engines, developers are still having to write a
good amount of code. Even if you aren’t a full-blown programmer, this guide still provides
insight to how programmers implement and execute fairly advanced programming techniques
without the use of a game engine. This program was also one of my last assignments for my
Intro to Computer Science II course during my undergraduate degree. All diagrams and code in
this guide I created and converted digitally from my original notes. If you have any questions
about this guide or any other general inquiries, you can email me at technologicguy@gmail.com
Resources Used:

• Dale, Nell – Weems, Chip. Programming and Problem Solving With C++ (4th Edition) –
2004

Conclusion

