/A[Chad\Jordan]$/ § vvvvvvvvvvvvvvvvvvvv 3
/N *{123}\@[Developers\ALane]$/ H i
/A[Codetown\USA]110101$/ z {

Regular Expressions

Using Regular Expressions for
Form Validation in JavaScript

By Chad Jordan — February 28™ 2009



In this guide you will learn:
1. Athorough understanding of the what, how, and why of regular expressions
2. The advantages and uses of implementing regex into JavaScript
3. The fundamentals of creating a basic sign-up form using HTML and CSS
4. A complete implementation using JavaScript to build the functionality of an electronic
account form for regex validation.

Introduction

Most people have come to know JavaScript as a front-end programming language for the web,
but JavaScript is also a technology used for the back-end. If you read my previous guide on how
to write a spam filter in Perl, you saw my brief explanation of using regular expressions for
matching email addresses and trimming whitespace.

Regular Expression Email Matching Example

{ Regular expression boundary I

Match anything Match as many times
contained within as possible y Madtﬁh upper
brackets and lower case
ﬂ Match the @ symbol | [A through Z
/[\w._%+-1+@[\w.-]+\.[a-zA-Z]{2,4}/
| |
Match ., _, |Match a single period Match at
%, +, and - least two
if found times but
no more than
Match any character A - Z four times

upper or lower case and
any number 0 to 9

Regular Expressions (Regex for short) comes from mathematics and computer science theory,
where it reflects a trait of mathematical expressions called regularity. The text patterns used by
the earliest grep tools were regular expressions in the mathematical sense. In programming,
the use of regex falls under multiple categories and it has a slightly different set of rules
depending on which programming language you’re using. Regular expressions are patterns
used to match character combinations in strings. However, regardless of which technology
you’re using it for, most of the same rules apply when implementing it. A regular expression
can be a single character, or a more complicated pattern. Regular expressions can be used to
perform all types of text search and text replace operations. This is done by using special
characters/symbols in very specific ways. Below are some of the most common symbols used
in regex syntax.

Characters: Descriptions:

\ The backslash quotes the character after it.

The dot represents any single character.
* The asterisk can represent any character. However, whereas the dot can only represent a single
character, the asterisk represents anywhere from zero to an infinite amount of characters.




S The dollar sign at the end of the regex signifies the end of the line.

A A circumflex at the beginning means it is the beginning of a line, and any characters immediately
following it must be located at the very beginning of the string.

[set] A set of characters in square parentheses matches any single character from a set.

Aside from the conceptual, and implementation side of regex, this guide will not be too heavy
of a read. Just like my previous guides, I'll be using the vim code editor in Linux for my code
examples. Regexes are implemented for a lot of different uses, but in this guide, I'll be using
them to write functions into validating user input into an account sign-up form.

Regex in JavaScript

In JavaScript, regular expressions are also objects. There are two ways to create a regular
expression in Javascript. They can be created either with a RegExp constructor, or by using
forward slashes ( /) to enclose the pattern. A good example of this is the following:

let re = /hi/; The easiest way to create a new RegExp object is to simply use the special regex
syntax: myregexp = /regex/. If you have the regular expression in a string (e.g. because it was
typed in by the user), you can use the RegExp constructor: myregexp = new
RegExp(regexstring). Modifiers can be specified as a second parameter: myregexp = new
RegExp(regexstring, "gim") In JavaScript source code, a regular expression is written in the form
of /pattern/modifiers where “pattern” is the regular expression itself, and “modifiers” are a
series of characters indicating various options. The “modifiers” part is optional, and this
portion of the syntax is borrowed from Perl. An example of this is-as follows:

/g enables “global” matching. When using the replace() method, specify this modifier to replace
all matches, rather than only the first one.

/i makes the regex match case insensitive.

/m enables “multi-line mode”. In this mode, the caret and dollar match before and after line
breaks in the subject string.

We need regexes because by using them we can express something that is a generalization
rather than something specific. They allow us to unambiguously describe patterns that can be
used to have software do things like search for more complex patterns in redundant data. A
JavaScript engine is a software component that executes JavaScript code. The first JavaScript
engines were mere interpreters, but all relevant modern engines use just-in-time compilation
for improved performance. JavaScript engines are typically developed by web browser
vendors, and every major browser has one. It outsources the understanding work to another
engine called a Regex Engine. | have created a visual to illustrate what’s happening:

A regular expression

\ Regex Engine

N\d+/ = R parser seraer
JS Engine
h h geﬁggaetor interpreter
cc

& regexp




In order to allow the user to input information into a form, we have to first create a webpage
with the embedded form in it. In my previous guide on coding a basic website from scratch, |
presented the basic concepts of creating simple web pages with HTML and CSS. This process
will be similar. | start by writing a container that will house the sign-up form for the user
account. Starting on line 14 | place a header tag for the largest text at the upper-left portion of
the form. There has to be an action that takes the inputted information of the form, and feeds
it to the CGl file to be stored on the department servers. This is done on line 16 in the form
action tag. On the next line, | begin by creating the content on the form with instructions for
the username input area. Since this is a sign-up form for a user account, this will have multiple
input tags of different types, separated by paragraph tags.

ONOCOPHWN P

<html xmlns=

<head>
<link
<title
<script t
</script>
</head>
<body>
<div id= >
<h1>Start ew Account</h1>
<hr/>
<form action= nsubmit="return allvalid();">
<p>What is your desired username?</p>
<p>(12 Character max, only letters, numbers and underscores are allowed)</p>
<input type= id= name= onblur="checkusername();"/>
<p>What is your first and last name?</p>
<input type= d name= )nblur="checkfullname();"/>
<p>Email Address</p>
<input type= id= name= onblur="checkemail();"/>
<p>Desired Password</p>
<input t name= id />
<p>Confirm Password</p>
<input type= name=
<p>Credit Card Number</p>
<p>(separate numbers with dashes)</p>
<input t name= id onblur="
<p>What is your Gender?"</p>
<input type= name= id />Male
<br/>
<input type= name= id />Female

The select tag of the region id input on line 36 will automatically create a drop-down and once |
add the option values, the user can choose from their regional location.

<p>Select your Region</p>

<select name= id= >
<option va >West Coast </option>
<option >Middle Area-Pointy Land </option>
<option >Great Plains </option>
<option >Midwest </option>
<option >Gulf Coast </option>
<option >East Coast </option>

</select>

wononononn

<br/>
<br/>

<textarea rows= cols= readonly= >

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam commodo pulvinar odio. Ut lac
inia congue tortor. Nam volutpat purus. Nulla ipsum ligula, consequat eu, pharetra quis, imperdiet eu, 1lib
ero. Nullam molestie, risus sit amet feugiat consequat, ligula purus porta nisi, eget venenatis justo maur
is id lectus. In in diam. Fusce pulvinar nisl eu augue. Proin et nisl ut risus tincidunt tincidunt. Donec
turpis. Cras aliquet. Donec in elit at tellus dapibus fringilla.

Curabitur ornare nisl. Etiam cursus quam vehicula libero. Vivamus arcu elit, fermentum in,




On line 46 the textarea for readonly text contains Lorem ipsum text, but only for the sake of
this assignment. This area is where you would place the organization’s terms and conditions for
the user account if this was a real-world project. After the “terms and conditions” text is
complete, | add a closing tag for textarea, add a couple of break tags, and then on line 55 | add
a checkbox with some text for agreeing to the terms and conditions. Then a couple more break
tags to add a small gap, followed by the last two remaining input tags on lines 58 and 59 for the
option of resetting all input fields, and then the submit button. These are typical elements of
any sign-up form. Once the user is ready to submit the information in the form, this data is sent

n ante. Nulla facilisi. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus m
us.

</textarea>

<br/>

<br/>

<input type= name= />1 Agree to the Terms and Conditions
<br/>

<br/>

<input type=
<input type=
<br/>
</form>
</div>
63 </body>
64 J/html>

to the CGl file that the professor provided on the department server. This is the same file
referenced earlier in the <form action> tag. With this code in place, my sign-up form is created
but it has no style applied to it, and | want this to look pleasant on the webpage which means
it’s time to add some basic CSS to the page. The following CSS code is written into my style.css
file and referenced in the HTML file.

ound-attachment:
-caps

}
#container {
ba ound-image: url(
H

-right: 3 >

| chose this background image for the body
of my webpage to hold the sign-up form.
The container id holds the content of my
form and floats it to the left side of the
screen. | made a simple brown gradient background for the validation form in order to give it a
little more color for the surrounding page. The brown gradient was just a simple effect |




created for the form. If you have the time to create a much more detailed, transparent design
for your form, that can easily be added, and then use my CSS code or write your own to load a
design into your form. With my HTML and CSS code in place, this is what my form currently
looks like on a webpage. As the page stands, | can interact, scroll, and type within the input
fields, but because there is no functionality built into the form, nothing will happen yet.

S7ART A NEW ACCOUNT

WHAT IS YOUR DESIRED USERNAME?

(12 CHARACTER MAX, ONLY LETTERS, NUMBERS AND UNDERSCORES ARE ALLOWED)

WHAT IS YOUR FIRST AND LAST NAME?

EmaiL ApDRESS

DESIRED PASSWORD

CoNFIRM PASSWORD

CrepiT CARD NUMBER

(SEPARATE NUMBERS WITH DASHES)

Whar I1s YOUR GENDER?"™

® Mare
® FemaLe

SELECT YOUR REGION

West Coast v

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nam commodo pulvinar
odio. Ut lacinia congue tortor. Nam volutpat purus.
Nulla ipsum ligula, consequat eu, pharetra quis,
imperdiet eu, libero. Nullam molestie, risus sit
amet feugiat consequat, ligula purus porta nisi,
eget venenatis justo mauris id lectus. In in diam.

Writing Regex with JavaScript

Now it’s time to breathe some life into the form using JavaScript regular expressions. Basically,
I’m going straight down the page of my form and addressing each input field in sequential
order. The first is the username. You can see from line 3 that | set up the regex to check the
parameters of the required field, and if this is not met, an alert message pops up letting the
user know the only types of characters allowed in the input field before moving on.

function checkusername(){
var usernametag=document.getElementById(
if(usernametag.value.search(
usernametag.style.color= B
alert(
)i

return

usernametag.style.color=
return H




The next function on line 13 handles the full-name element for the first and last name field. |
start by writing a function called checkfullname, getting the fullname element accessing the
data attribute of the document, and then assigns it to the variable fullnametag. Next, on line
15 | use a conditional if statement to check for the value of the search, then passing the regex
search parameters to the function. If the characters do not match the characters in the
expression, then the characters are colored red, and the user is presented with a message on
the screen letting them know that they have failed to input the proper information. Otherwise,
if it’s accepted, then it highlights the characters in green and allows the user to keep inputting
more information in the next input fields. Essentially the same checks are performed for every
function, just merely altering the regex fields according to the required user input.

13 function checkfullname(){
var fullnametag=document.getElementById(
if(fullnametag.value.search(
fullnametag.style.color= A
alert(
return :

fullnametag.style.color=
return ;
}

}
function checkemail(){
var emailtag=document.getElementById(
if(emailtag.value.search(
emailtag.style.color= g
alert(

return

emailtag.style.color=
return H
}
}
function checkpassword(){
var passwordltag=document.getElementById( I
var password2tag=document.getElementById( )i
if(passwordltag.value==password2tag.value && passwordltag.value.length > 0){
passwordltag.style.color= B
password2tag.style.color= g
return ;

passwordltag.style.color=
password2tag.style.color=
alert(

return :

While the user is not expected to input real credit card information for the assignment, the
program still has to meet the required credit card format. The regex on line 54 ensures this.

52 function checkcreditcard(){
var creditcardtag=document.getElementById(
if(creditcardtag.value.search(
creditcardtag.style.color= 3
alert(
)i

return

creditcardtag.style.color=
return g




We know that credit cards have four sets of four numbers that are checked in a numeric range

from 0 —9 and this is exactly how we write the expression. This last function checks for all valid
input and once the data attributes are verified, the form is successfully accepted and sent over

to the servers.

64 function allvalid()({

65 if(!checkusername()) return

66 if(!checkfullname()) return

67 if(!tcheckemail()) return

68 if(!checkpassword()) return 5

69 if(!checkcreditcard()) return 5

70 var radiomaletag=document.getElementById( DE
71 var radiofemaletag=document.getElementById(
72 if(!(radiomaletag.checked || radiofemaletag.checked
73 alert( Wk

74 return o

75 }

76 var regiontag=document.getElementById(

77 var checkboxtag=document.getElementById(

78 if(!checkboxtag.checked){

79 alert(

80 return

81 }

82

83 return

84 }

85 ]

)
)

i
)

With all of this now in place, the form behaves exactly as it should. We can enter a random
string of characters into the username field, not following the format, and sure enough, we get
the following response from the form:

C @ File | /Users/cjordan/Desktop/cos264/cjordan-Validation-form/Aalidation html|

This page says
START A NEW ACCOUNT Username must contain only letters, numbers, or underscores with

a maximum count of 12 characters.

WHAT IS YOUR DESIRED USERNAME?

( 12 CHARACTER MAX, ONLY LETTERS, NUMBERS AND UNDERSCORES .

[omecyy 4

WHAT IS YOUR FIRST AND LAST NAME?

Yay! | confirmed the
form properly

submitted the data.
WHAT IS YOUR DESIRED USERNAME? This is a successfully

S7ART A NEw ACCOUNT

(12 CHARACTER MAX, ONLY LETTERS, NUMBERS AND UNDERSCORES ARE ALLOWED) comp leted regex

. validation form in
cjordan1983 JavaScript!

WHAT IS YOUR FIRST AND LAST NAME?

Chad Jordan




Conclusion

It should go without saying, of course, regexes can add more complexity, but if you consider the
amount of time you can also save by using them for dynamically loading large amounts of XML
data, it can help to alleviate unwanted redundancies. Regular Expressions are also used in
programming higher efficiency in search engines as well as web search results. They are used in
natural language processing and can be used in automated trading that analyzes newsfeeds
that then make automated buy and sell decisions. There are many uses for implementing
them, and while the process of implementing them can be both simplistic, or very complex,
there is much validity in using them to remove unneeded redundancy in programming. If you
can learn regexes, you can save a lot of time in programming tasks, and in web programming
languages like JavaScript, and Perl. Regexes are frequently used for performing back-end
procedures. All diagrams and code in this guide were created, written, and provided by Chad
Jordan. For any possible inquiries such as general questions regarding this guide or other
professional inquiries please feel free to email me at cjordan@wondercreationstudios.com

Resources Used:

e Sebesta, W. Robert - Programming the World Wide Web — 4th Edition — 2008

e \W3schools.com
e Stock Photo



https://www.w3schools.com
https://www.istockphoto.com



