

Writing A Spam Filter in Perl
By Chad Jordan – February 21st, 2009

 1

In this guide, you will learn:
1) The syntax and practical purposes of using the Perl programming language
2) How to identify the elements of spam for bypassing unwanted emails
3) Calculating probability using scoring filters, and reducing false positives
4) Implementing commands, and function calls for client-side, and server-side purposes
5) Creating and merging hash tables, sorting data in arrays, scalars, CGI architecture,

marking email addresses, and splitting whitespace using regular expressions

Spam has been around for about as long as email has existed since the late 1970s. Over time
there have been many attempts at keeping spam out of people’s inboxes, and most of these
are successful. The truth is phishing scams, fee frauds, and other malicious links have still
managed to find a way around the filters when scammers have beat the system. Creating spam
filters is not an easy endeavor and requires the developer to be mindful of all of the sly actions
that a scammer would perform. This level of detail can be difficult to match when
implementing counteractive measures against it. In this guide, I will be covering the methods
that I took when creating my own spam filter using the Perl programming language, the
practicalities of using Perl for a program like this, and essentially an introductive overview of
what can be expected when writing a spam filter in the Perl language. While writing the spam
filter portions of this guide, my code examples will be from a simple code editor that I used in
Linux called Vim. A little more overview of Perl, it was developed by Larry Wall, Perl is a high-
level, interpreted, C-based, dynamic programming language with Unix shell scripting features
designed for text manipulation. It’s used in many system administration, networking, report-
processing, user interface applications, and mission-critical projects in the public and private
sectors. Though Perl is not officially an acronym some have described it as Practical Extraction
and Report Language. While my spam filter program will not have much code, Perl is nothing
like my previous guide on coding a basic website with HTML and CSS. Perl is an actual
programming language for the web with a bigger learning curve than other web programming
technologies. This means that while this guide is not designed as a beginner-level programming
guide, it could still be very useful as a guide for current web developers interested in using Perl.

Perl is cross-platform supporting both procedural and object-oriented programming. Perl’s DBI
(Database Integration) interface supports third-party databases including Oracle, Sybase,
Postgres, and MySQL. Perl also works well with markup languages such as HTML, XML, SGML,
and more. Among other developers online, Perl has been widely known as "the duct-tape of
the Internet and can handle encrypted Web data, including e-commerce transactions. Since
Perl is an interpreted language, it means that your code can be run as-is, without a compilation
stage that creates a non-portable executable program. Traditional compilers convert programs
into machine language. When you run a Perl program, it's first compiled into a byte code,
which is then converted (as the program runs) into machine instructions. It is not quite the
same as shells, or Tcl, which are strictly interpreted without an intermediate representation.
Perl is a free-form language which means you can format and indent it however you like.

Introduction

The Practicalities of Perl

 2

You can use the Perl interpreter with -e option at the command line, which lets you execute
Perl statements from the command line. Here is a demonstration at $ prompt.
Interactive Mode Programming:
A Hello World! Program

Output: Hello World!

Script Mode Programming:
Create a text file ‘hello.pl’ with some code

Here, /usr/bin/perl is actual the Perl interpreter binary. Before you execute your script, be
sure to change the mode of the script file and give execution privilege, generally a setting of
0755 works perfectly and finally, you execute the above script as follows at the command line:

$chmod 0755 hello.pl
$./hello.pl

and then the following result will execute:
Hello World!

Perl Comments & Whitespace
Comments in any programming language are friends of developers. Comments can be used to
make program user friendly and they are simply skipped by the interpreter without impacting
the code functionality. For example, in the above program, where I typed, #This will print
“Hello World!” with a hash # symbol at the beginning is a comment. Example:
This is a comment in Perl

Whitespace serves mostly to separate tokens, unlike languages like Python where it is an
important part of the syntax or Fortran where it is immaterial. Block comments in Perl are
enclosed within the = and =cut symbols. Everything written after the = symbol is considered
part of the comment until =cut is encountered. There should be no whitespace following = in
the multi-line comment. Example:

The Syntax of Perl

$perl -e 'print "Hello World!\n"'

#!/usr/bin/perl

#This will print “Hello World!”
print “Hello World!”;

=This is
a
block comment
=cut

 3

Output: Hello World!

Perl Scalar Variables
A scalar is a single unit of data. That data might be an integer number, floating point, a
character, a string, a paragraph, or an entire web page.

Perl Numeric Scalars
A scalar is most often either a number or a string. This example provides how you might use
various types of numeric scalars.

#!/usr/bin/perl

$age = 26; # An integer assignment
$name = “Chad Jordan”; # A string
$salary = 1619.83; # A floating point

print “Age = $age\n”;
print “Name = $name\n”;
print “Salary = $salary\n”;

#!/usr/bin/perl

$integer = 100;
$negative = -200;
$floating = 302.640;
$bigfloat = -5.2E-18;

377 octal, same as 255 decimal
$octal = 0377;

FF hex, also 255 decimal
$hexa = 0xff;

print "integer = $integer\n";
print "negative = $negative\n";
print "floating = $floating\n";
print "bigfloat = $bigfloat\n";
print "octal = $octal\n";
print "hexa = $hexa\n";

=This program will
display ‘Hello World!’ on the
screen
=cut

$string = “Hello World!”; # A simple assignment statement
print $string;

Output:	
integer = 100
negative = -200
floating = 302.640
bigfloat = -5.2E-18
octal = 255
hexa = 255	

Output:	
Age = 26
Name = Chad Jordan
Salary = 1619.83

 4

Scalar Operations
The following are string and numeric operations.

Special Literals
The special literals __FILE__, __LINE__, and __PACKAGE__ represent the current filename, line
number, and package name at that point in your program. __SUB__ gives a reference to the
current subroutine. They may be used only as separate tokens; they will not be interpolated
into strings. If there is no current package (due to an empty package; directive), __PACKAGE__
is the undefined value.

Identifying spam is usually pretty obvious, but sometimes scammers still figure out a way to get
into your inbox. When it comes to identifying spam, we know to consider the following:

1) The email is from a legitimate source, and not a public domain like ‘gmail.com’
2) Emails Requesting Login Credentials, Payment Information or Sensitive Data
3) The message creates a sense of urgency or requests immediate action
4) Inconsistencies in domain names and email addresses
5) The domain name of the email address is misspelled
6) The email itself has misspelled words or bad grammar
7) Suspicious attachments or links in the email

How to Identify Spam

#!/usr/bin/perl

$str = “hello” . “world”; # String concatenation
$num = 6 + 20; # Adds two numbers
$mul = 4 * 8; # Multiplies two numbers
$mix = $str . $num; # Concatenates string and number

print “str = $str\n”;
print “num = $num\n”;
print “mul = $mul\n”;
print “mix = $mix\n”;

Output:	
str = helloworld
num = 26
mul = 32
mix = helloworld26

#!/usr/bin/perl

print “File name = ” . __FILE__ . “\n”;
print “Line Number = ” . __LINE__ . “\n”;
print “Package = ” . __PACKAGE__ . “\n”;

they cannot be interpolated
print “__FILE__ __LINE__ __PACKAGE__\n”;

Output:	
File name hello.pl
Line Number 4
Package main
__FILE__ __LINE__ __PACKAGE__

 5

Some common elements of phishing emails:

The problem with spam filters is that in a way they will always be in a state of vulnerability
because spammers are always targeting new ways to bypass the filter. A solution to this is
comparing the spam messages against legitimate messages and view the incoming message.
Words in your incoming message are looked at individually and given a score based on whether
it is a spam word or a good word. Total up the score for the incoming message and you have a
very good filter. Here is an example using standard deviation for scoring filters in Perl.

Calculating Probability in Perl

Starting on line 1 this function returns the
smallest argument given, and the function
beginning on line 9 returns the largest
argument given.

We have to keep track of the number of
occurrences for each word in a normal email,
the number of occurrences for each word in a
spam message, and then separate the
number of good messages and the number of
bad messages. I set up the following
declarations from lines 17 – 20 to use in my
functions.

 6

After splitting up the message into separate words, you call ‘score’ with the words to retrieve
the probability that the message is spam. This is a good start, but there’s a lot more that can be
done for better accuracy than what I’ve provided in this example. One method is to throw
more filters at our program, but an even more efficient way is to reduce what is known as false
positives using regular expressions. To begin, let’s first go over what regular expressions are,
and how you implement them using Perl. Short for regular expression, a regex is a string of text
that allows you to create patterns that help match, locate, and manage sequences of characters
in the text. We can use this method when matching email addresses.

Beginning on line 22 this returns the score for the words given, then on line 23 the words in
the email, followed on line 24 by the probabilities for each word not defined yet. After this, I
iterate through the good and bad words in the messages, calculate the minimum from the
maximum, and return the values for $prod.

 7

The power of regular expressions comes from its use of metacharacters, which are special
characters (or sequences of characters) used to represent something else. For instance, in a
regular expression, the metacharacter ^ means "not". So, while "a" means "match lowercase
a", "^a" means "do not match lowercase a". Regex does have slightly different versions if you
will, with different sets of rules for different languages. E.g Java, Perl, Python, etc. With this
abstract method, we can perform split, trim, search, and replace operations for characters.
With this in mind, it’s time to consider how to reduce false positives. We know that we need to
prevent false positives from inspecting the results of the match to ensure they're relevant to
your search. One common way to do this is to relax your regular expression. For example,
replace a single space with /\s*/ to allow for any amount of whitespace. The second way is to
make another pass through the document with a separate regular expression or processing
technique, to catch the data you missed the first time around. For example, extract into an
array all the things that look like news headlines, then remove the first element from the array
if you know it's always going to be an advertisement instead of an actual headline. I will
provide the code for my spam filter shortly with similar examples.

A CGI (Common Gateway Interface), is a set of standards that defines how information is
exchanged between the web server and a custom script. In Perl, CGI is a protocol for executing
dynamic scripts via web requests. It is a set of
rules and standards that define how the
information is exchanged between the web
server and custom scripts.

The CGI specs are currently maintained by the
NCSA (National Center for Supercomputing
Applications) and NCSA defines CGI is as follows:
The Common Gateway Interface, or CGI, is a
standard for external gateway programs to
interface with information servers such as HTTP
servers.

The diagram to the right, demonstrates a simple
layout of how the CGI architecture works. Your
browser contacts web server using HTTP
protocol and demands for the URL, i.e., web
page filename.

Web Server will check the URL and will look for
the filename requested. If web server finds that
file then it sends the file back to the browser
without any further execution otherwise sends an error message indicating that you have
requested a wrong file. The Web Client takes the response from the web server and displays
either the received file content or an error message in case the file is not found.

The Perl CGI Architecture

 8

For the process of implementing my spam filter, I begin on line 4 by creating hash tables for
storing the counts of good, bad, and odd emails.

Then, beginning on line 16 I check the
spam file to see if it has a reference to
the file name that I’m getting the spam
from, then dumping the file into the
array, spamlines.

Next, on line 23 I use a simple regular
expression to split the string where
anything is not a word, apostrophe,
hyphen, or dollar sign and create
temporary storage for one line of email
text.

Line 25 searches through the hash table
for bad words and adds 1 until there are
no bad words.

Note:
Between lines 32 and 33, if you
want to check the status of
spamlines you can run the
command, print @spamlines;
and this will provide you with any
spam found within $goodfile.
Between lines 38 and 39 we can
print $word, “\n”;

Starting on line 43, I merge the
two hash tables together, and
then allowing to loop over all
words in all emails.

Writing the Spam Filter

 9

This section is really just like
the preceding functions. We
should really have a
contingency check in place for
unknown origins of data
within the message. This
function allows us to check for
probable bad data.

Beginning on line 83, I’m sorting the words from unknown messages by their distance from .05
giving an array from least interesting to most interesting. On line 90 I’m multiplying together
one minus the probability of all the words. Then, the final function starting on line 93
calculates the probability of all found data, and then prints it out to the screen.

 Here is a partial result of my spam filter catching a bad email provided by the CSE department servers.

10

This concludes my spam filter program. While there is a lot more involved with how Perl
interacts with databases, CGI programming, regular expressions, and other algorithms, this
guide is intended to provide a fairly lightweight, but effective spam filter program using the Perl
programming language. This Perl program is actually my third assignment for my COS 264 web
programming course at Taylor University. My hope is that this guide was helpful in learning
more about Perl, and especially about the process of building your own spam filter. All
diagrams and code in this guide were created, written, and provided by Chad Jordan. For any
possible inquiries such as general questions regarding this guide or other professional inquiries
please feel free to email me at cjordan@wondercreationstudios.com
Resources Used:

• Schwartz, Randal L., Phoenix, Tom, Foy, Brian d. Learning Perl – Fifth Edition – 2008
• LearnPerl.org
• PerlTutorial.org
• W3schools.com

Conclusion

http://learn.perl.org
https://www.perltutorial.org/perl-regular-expression/
https://www.w3schools.com/

