
[Document Subtitle]

UNDERSTANDING AND
CODING A BASIC WEBSITE
FROM SCRATCH
By Chad Jordan - February 13th 2009

1

In this guide, you will learn:
1. The simple differences between coding with markup languages, and programming with

programming languages
2. An essential file structure for clean data management practices
3. Creating a basic HTML (Hypertext Markup Language) document
4. Understanding how HTML interacts with CSS (Cascading Style Sheets) to position and

decorate your content within your documents
5. Completing a simple website template complete with header navigation and footer info.

When working with any code on the web, there are two parts to understanding how it’s
implemented and built. These two areas of coding are known as the front-end and the back-
end. The front-end consists of HTML (Hypertext Markup Language), CSS (Cascading Style
Sheets) XML (Extensible Markup Language), and typically JavaScript. The back-end consists of
programming languages such as PHP, Perl, Ruby, Java, (also) JavaScript, C#, and MySQL. While
there are subset technologies of each of these, this guide is only designed to look at the bare
essentials needed to build a simple website. As a result, this guide will only focus on HTML,
and CSS. An HTML document is a plaintext document structured with elements. Elements are
surrounded by matching opening and closing tags. Each tag begins and ends with angle
brackets (<>). There are a few empty or void tags that cannot enclose any text, for instance:
.

HTML and CSS are not programming languages, they only play hand in hand for markup
purposes. We will not be creating/assigning variables, for loops, or if conditional statements.
Markup is strictly used for visual purposes and navigating between web pages. To start things
off, I’m using a simple code editor in Linux called Vim, but you can use any blank text
document to start. As I progress through this guide, I will provide a side by side ‘Code to Web
View’ result to help the reader visualize what is happening. This example provides the first
steps we take in creating our index file using XHTML:

The initial HTML tag is declared as XHTML DTD (Document Type Definition) because it describes
the allowed syntax and grammar of XHTML markup. While Chrome, Firefox, and Opera will
likely run with no issues, this declaration will allow the browser to ignore any potential errors
that Internet Explorer may throw us down the road. The document can also be simply declared
as a regular HTML tag, but XHTML allows for more versatility when XML data is used. However,
when using XHTML this type of notation in my code is mandatory.

Introduction

2

With every open tag there is a closed tag indicating that the section of code being
implemented has been completed. This is represented as <html> and </html>. The closing
tag will always have a forward slash as shown. All content for your website is wrapped within
these two tags as you can see from the above example. Our website also includes an
opening and closing <head> tag, followed by a set of <title> tags and then the main <body>
tags where all main content is placed.

Once we have the essentials of our document in a good place, it’s time to allow the content to
be properly read through the system. You will want to save your progress in your blank text
document, but not with a .txt file extension. In order for your system and the web to read your
file, you must save it as a .html extension so save your file as index.html
The screenshot example above on the right displays the result of what displays on your HTML
document after you’ve saved the proper filename and run the file.

The more you build upon your website, the more content will be required for you to keep track
of. Maintaining clean and structural data practices is absolutely vital for referencing your
content in data form as you progress the implementation of your site. As such, the following
hierarchical chart is a visual representation of how I store my content for my website:

The basics of what you should be starting with will look like this on your computer:

File Structure/Data Management

3

No matter what kind of website you are wanting to build, you will learn how important it is to
keep everything organized not only for later changes or removal, but also as a point of
reference in your code. When building your website, you need to become familiar with other
web technologies that allow you to add some structure and style to your pages.

CSS is the technology we want to harness for that stylizing structure. The <div> tag allows us to
define a section in an HTML document where we create a container for HTML elements. These
elements are defined as ID’s and classes. Just like your text document was made into an HTML
file, you will do the same thing again for the stylesheet. Rename the text document to style.css
and make sure the file is placed in the ‘css’ directory.

Using the <meta> tag with this string:
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
will tell the browser to use the utf-8 character encoding when translating machine code into
human-readable text and vice versa to be displayed in the browser. Type this into the
index.html file underneath the <title> tag inside the <head> section. We need to link in the
style.css file so that every element we create in the stylesheet will be applied to the HTML file.
Do this by typing the following string underneath the <meta> tag:
<link rel="stylesheet" type="text/css" href="css/style.css"/>
At this point, your index file should look like this:

Notice we use the ‘href’ data attribute to pass the string to reference the location and link our
CSS file that we created and placed earlier. At this stage of the guide, it’s time to start taking
more control of our content and customizing the page the way we want. I’m making changes
to the index.html file and replacing portions of the syntax to reflect the new divs that I’m
making in the CSS file.

First, decide what kind of font and color scheme you’re wanting to use on your site. For
consistency, I’m going to use a very standard and widely used font. The content that we’ll be
making changes to occurs within the body of the webpages. Ergo, it’s time to write some CSS
elements that we can use within the main body across the entire site no matter how many
different pages we wish to add. Think about how you want your site to look. Do you want the

HTML & CSS Interaction

4

text to float to the left, and have other content off to the right, or perhaps you want the text to
float to the right, and have other content off to the left. I typically like to center my content.
As such, this piece of CSS code is what I’m starting with in my stylesheet:

Everything created in your CSS file is referenced in your main index file and all other webpages
that you decide to add to your site. In this file the body attribute will contain all of the
following data for my page. Setting margin and padding to 0 removes all default margin and
padding for all objects on the page, regardless of browser. Imagine placing a box into another
box where the inner box is just slightly smaller so it fits perfectly. Ergo, there is no space
between the inner (content) box and the outer (border) box because there is zero padding. In
terms of applying colors to your site, CSS understands all colors are represented as hexadecimal
values so it’s just a matter of setting the values to the data properties that you’re wanting to
use. Text-align is a property that specifies the horizontal alignment of text in an element.
When you justify text, the property inherits added blocks (spaces) between words so that both
edges of each line are aligned with both margins.

Once saved and then applied to the index file, we see the following results at runtime:

5

As you can see, I went with a vibrant orange for the background of the body and the font has
been altered. At this stage of the guide it’s time to start accelerating the process of the site by
adding div-containers to center our content, implementing a header, customized fonts, and
more colors to visually separate sections of the page.

When setting a position to relative, we offset the tag by nudging it in the opposite direction
from the specified location so the pixels margin-left and right are moving it into the reverse
location for us. The background property in the header element sets the header image at the
position based on the data properties. Setting margin to ‘0 auto 0 auto’ where 0 is top-bottom
and auto for left and right at X and Y positions. This means the left and right margins will take
auto margins according to the width of the element and the width of the container. Setting the
display property to a table value makes the element behave like a table. This allows you to
make a replica of an HTML table without using the tr (table row) and td (table data) elements.
Setting a ‘hidden’ value to the overflow property is clipped and the remaining content is
hidden. What this means is you can use the overflow property when you want to take more
control over your layout. This allows us to specify what happens if content overflow’s an
elements box. The background property takes the background.png image file seen here:

and repeats it in the Y-direction creating a ‘drop-shadow’ affect around the page for as long as
the developer wants to keep extending more content on their pages. Since the length of
content on any given website is never predefined, this method provides an ultra-lightweight
and simple approach to loading pages faster, and extending content with less code. Creating
your own images and manipulating them in this manner is an effective way to build the pages
on your website. The same is said for linking CSS code to an HTML document. If you think
about what we’ve done so far, you can just as easily write all of the CSS within the HTML
document. This can be done in 3 ways: Inline, Internal, and External. Inline uses the style
attribute inside of HTML elements. Internal is a <style> tag in the <head> portion of the index
file, and external is the linking method I’ve been using in this guide to connect to an outside file.

Creating the Header

6

As I add more CSS elements to my stylesheet, you can see where I now define classes that are
applied to the data attributes ‘title’ and ‘subText’ globally instead of the ID’s that I specified
with the ‘header’ and ‘page’ attributes. ID’s are applied to one specific element on a page
whereas classes are applied to multiple elements. We do this with ID’s when an element has a
particular style applied to it, and a class is more effective with building your overall layout since
it applies to more than one element.

The ‘Times New Roman’ font family is fairly standard and elegant for this example of my header
titles. These data attributes are used as <div> tags throughout your site. With the CSS
elements in place, we can add the divs to the html as we want them to appear on the webpage:

As shown here, the attributes are called in the html as divs just as we defined them in the
stylesheet. In any code, no matter if it’s written for software or for the web, it’s read in all the
same way starting from left to right, and top to bottom of each file we create. Keeping this in
mind, we structure our code as we want it to appear on our website. Once this is written in a
clean and readable manner, we save our progress and run the index file again.

7

Our page is now centered as I want it and the shadow is looking good around the page border:

Keeping in mind this is only the header, it’s time to expand our page with the next CSS element.

What we’ve learned so far is that CSS has the ability to create padding around objects of our
specifications, positioning of content anywhere we wish to place it, as well as applying colors
and fonts to text. Creating a menu bar is the same principle. We simply consider where we
want to place the menu bar on our page. A general rule of thumb is that menu bars are near
the top of the page due to having a drop-down submenu when hovered over, and this concept
applies the same way here. For this guide, I’ve decided to make my own menu bar in

Adding a Menu Bar

8

Photoshop. Afterward, I simply position and place it using code. The above CSS elements are
the same conceptual processes that we’ve been using so far, just slightly altered with the new
location and dimensions being the big difference.

Since I love the fall season, I’ve decided to evolve the site into more of an autumn theme,
keeping with the existing colors of orange and brown. This menu bar that I made in Photoshop
will provide a nice yellow to balance out the growing color scheme toward my autumn theme:

Just like previous CSS elements that we’ve written, we also implement the menu elements over
the top of our menu bar using html:

As you reference this screenshot, remember that this guide only represents creating a light-
weight website template. Even though I have typed index, about, and services.html as an
anchor tag reference, I’m not going to build them. They are simply here as a learning reference
to what you would implement on your own website. These elements are 100% valid for real-
world situations, but writing out a guide for every webpage is considerably too much.

For now, our focus remains on our website template and how our progress is growing with our
newly added menu bar!

We’re coming along well, but now we need to implement a body where our text will go, and
placing an additional submenu on the side of our pages. I’m putting my submenu on the right-
hand side of the page.

Creating the Body

9

As a visual representation, you can see the bar2.png image just to the right of this code. I’ve
enlarged the image 20 times it’s actual size for the sake of reference in this guide. Per our CSS
element, this image is repeated in the X-direction so once the browser compiles it on the
server, it loads instantly due to being so small. In the case of swifter loading times, and data
size we know this to be the most efficient and logical approach to loading content on our site.

Now we implement these elements into our html:

Just as we’ve written earlier, the div id’s and classes are assigned to their own div tag and then
an anchor tag references the location of the online link or page that you are wanting to
navigate to.

10

This is now the next result of our additional code:

Now we have our submenu on the right side for additional navigating through our site. Any of
those elements are also clickable because they are set as hyperlinks. Granted as they are, they
will all re-route you to my website, but per the above syntax, you can simply change the
location to whatever site/link you are creating on your site. We have a lot of empty space on
our page, so let’s fill it in with some Lorem Ipsum dummy text.

For this example, I’m just creating <p> tags because I’m wanting to fill in our empty area with
some text. While paragraph tags have no direct CSS applied to them, we still need to be
mindful where we are putting them because inside the current <div> (articleContent) they will
in fact have the CSS that was written for that particular div applied to them. Remember, as
mentioned before, all code is read from left to right, and top to bottom in the order that it was
written, so we have to look down the hierarchical flow of our tags to ensure it’s being placed
inside the ‘articleContent’ div so that the CSS elements are still properly applied.

11

Since we have done so, the result is as follows:

The text is properly inside of its container and displaying as we want it to on the page. Now, for
the sake of learning by example let’s purposefully place the paragraph tags outside of the
‘articleContent’ div just to see what would happen on our page:

Notice the <p> (paragraph) tags are outside of the ‘articleContent’ div just before the closing
body tag. So what will happen to the text?

12

Precisely correct! Just as you would expect our text is pushed outside of its container.
Therefore we properly ensure the paragraph tags are placed back within the proper div before
we add the last touch to our site.

The closing content of your
page is the footer. Every page
needs to have a proper header,
body, and footer. Since we’ve
come so far with understanding
and creating CSS elements,
there’s not too much to this last
process that I haven’t already
mentioned earlier.

Creating the Footer

13

From all previous examples that I’ve provided, we’re sticking with the same general concepts.
We’re simply creating more CSS elements that are referenced in our html file. Also, just like
previous examples and for the sake of learning the quick and easy way to add your footer, here
is my footer that I made in Photoshop:

With my last bit of coding for this guide, we’re creating the accurate alignment, padding, font
size, hexadecimal color values, and image reference to generate our footer before writing it in
to our html file. The id footer with an ‘a’ is nothing more than providing an anchor tag
adjustment for mouse interaction. Once we confirm the accuracy of our CSS elements, we add
the following syntax to our index file:
<div id="footer"><a href="http://www.wondercreationstudios.com"
target="_blank">Chad Jordan</div>
The anchor tag is passed to the footer, and will load the specified website in a new tab when
clicked. This is due to the target=”_blank” attribute. Your clients as well as prospective clients
should be able to see your website. However, I use the target=”_blank” attribute because I
don’t particularly like websites that open external website links in the same window just in case
I’m still wanting to navigate the existing site that I’m already on. Per our last example, we will
in fact be placing this div outside of all other divs right before the closing body tag because we
are connecting the footer directly to the bottom of the page, so it still has to remain inside the
body. Doing so will properly connect it to the bottom of your website:

14

From here, you can expand the website as much as you want! This is what you should consider
once the homepage (index.html) file is complete. At this stage in development the foundation
of your website is well underway and the foundation is one of the most important parts of
development. Now, you can create more pages by simply copying and pasting the index file,
rename it, and make small, necessary changes to build other pages like ‘About Me’ ‘Services’
‘Contact Info’ and more. This saves you a lot of time since the foundation of your code is
already built. Your index file provides you with all of the code for your other pages so you are
that much further ahead.

Overall consistency in your general page layout is a must for websites. Converting your web
design into an electronic template is one of the most time-consuming, and conceptually-
draining parts of the entire process. This is the case unless you are planning on a lot of
additional implementation using Javascript for front-end special effects, animations, or other
practical back-end purposes. My hope is that this guide has helped and inspired any who wish
to learn the basics of markup languages for basic, front-end web development. If you feel that
this guide has inspired you to keep moving forward with markup languages, I would encourage
you to start creating your own templates. Doing so will vastly increase your familiarity with
these technologies and make you a better coder. The following links are several templates that
I’ve created with most of the same methods from this guide using only HTML and CSS coding.

 Earthy Template Walnut Creek Golf The Beauty of Design

 Darkness Falls Raven’s Night Red Technology

When I was starting my journey in web development even prior to college I used W3Schools to
learn nearly all aspects of coding for the web. I highly recommend w3schools.com to anyone

Conclusion

http://www.wondercreationstudios.com/templates/earthytemplate/index.html
http://www.wondercreationstudios.com/templates/WC/index.html
http://www.wondercreationstudios.com/templates/Beauty/index.html
http://www.wondercreationstudios.com/templates/Darkness%20Falls/index.html
http://www.wondercreationstudios.com/templates/raven's%20night/index.html
http://www.wondercreationstudios.com/templates/redtech/index.html
http://www.w3schools.com

15

who is wanting to learn and build upon their skills in web development. That site has everything
you need for front-end and back-end development. All diagrams and code provided for this guide
were created by me. For any possible inquiries such as general questions regarding this guide or
other professional inquiries please feel free to email me at cjordan@wondercreationstudios.com
Resources Used:

• W3schools.com

http://www.w3schools.com

